DOI QR코드

DOI QR Code

Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta)

  • Hwang, Il Ki (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Kim, Seung-Oh (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Hwang, Mi Sook (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Park, Eun-Jeong (Seaweed Research Center, National Institute of Fisheries Science) ;
  • Ha, Dong-Soo (Seaweed Research Center, National Institute of Fisheries Science) ;
  • Lee, Sang-Rae (Marine Research Institute, Pusan National University)
  • Received : 2017.10.29
  • Accepted : 2018.02.20
  • Published : 2018.03.15

Abstract

Red algal mitochondrial genomes (mtDNAs) can provide useful information on species identification. mtDNAs of Pyropia / Porphyra (Bangiales, Rhodophyta) have shown diverse variation in their size and gene structure. In particular, the introns and intronic open reading frames found in the ribosomal RNA large subunit gene (rnl) and cytochrome c oxidase subunit 1 gene (cox1) significantly vary the mitochondrial genome size in Pyropia / Porphyra species. In this study, we examined the exon / intron structure of rnl and cox1 genes of Pyropia yezoensis at the intraspecific level. The combined data of rnl and cox1 genes exhibited 12 genotypes for 40 P. yezoensis strains, based on the existence of introns. These genotypes were more effective to identify P. yezoensis strains in comparison to the traditional DNA barcode cox1 marker (5 haplotypes). Therefore, the variation in gene structure of rnl and cox1 can be a novel molecular marker to discriminate the strains of Pyropia species.

Keywords

References

  1. Bierne, N., Lehnert, S. A., Bedier, E., Bonhomme, F. & Moore, S. S. 2000. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol. Ecol. 9:233-235. https://doi.org/10.1046/j.1365-294x.2000.00842.x
  2. Brodie, J., Hayes, P. K., Barker, G. L., Irvine, L. M. & Bartsch, I. 1998. A reappraisal of Porphyra and Bangia (Bangiophycidae, Rhodophyta) in the Northeast Atlantic based on the rbcL-rbcS intergenic spacer. J. Phycol. 34:1069-1074. https://doi.org/10.1046/j.1529-8817.1998.341069.x
  3. Guillemin, M. L., Contreras-Porcia, L., Ramírez, M. E., Macaya, E. C., Contador, C. B., Woods, H., Wyatt, C. &Brodie, J. 2016. The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: molecular species delimitation reveals extensive diversity. Mol. Phylogenet. Evol. 94:814-826. https://doi.org/10.1016/j.ympev.2015.09.027
  4. Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270:313-321. https://doi.org/10.1098/rspb.2002.2218
  5. Hughey, J. R., Gabrielson, P. W., Rohmer, L., Tortolani, J., Silva, M., Miller, K. A., Young, J. D., Martell, C. & Ruediger, E. 2014. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes. Sci. Rep. 4:5113.
  6. Hwang, M. S., Kim, S. -M., Ha, D. -S., Baek, J. M., Kim, H. -S. & Choi, H. -G. 2005. DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 20:183-196. https://doi.org/10.4490/ALGAE.2005.20.3.183
  7. Hwang, M. S., Kim, S. -O., Ha, D. -S., Lee, J. E. & Lee, S. -R. 2013. Complete sequence and genetic features of the mitochondrial genome of Pyropia tenera (Rhodophyta). Plant Biotechnol. Rep. 7:435-443. https://doi.org/10.1007/s11816-013-0281-4
  8. Hwang, M. S., Kim, S. -O., Ha, D. -S., Lee, J. E. & Lee, S. -R. 2014. Complete mitochondrial genome sequence of Pyropia yezoensis (Bangiales, Rhodophyta) from Korea. Plant Biotechnol. Rep. 8:221-227. https://doi.org/10.1007/s11816-013-0314-z
  9. Ikuta, K., Kawai, H., Müller, D. G. & Ohama, T. 2008. Recurrent invasion of mitochondrial group II introns in specimens of Pylaiella littoralis (brown alga), collected worldwide. Curr. Genet. 53:207-216. https://doi.org/10.1007/s00294-008-0178-x
  10. Kong, F., Sun, P., Cao, M., Wang, L. & Mao, Y. 2014. Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra. Mitochondrial DNA 25:335-336. https://doi.org/10.3109/19401736.2013.803538
  11. Kucera, H. & Saunders, G. W. 2012. A survey of Bangiales (Rhodophyta) based on multiple molecular markers reveals cryptic diversity. J. Phycol. 48:869-882. https://doi.org/10.1111/j.1529-8817.2012.01193.x
  12. Lindstrom, S. C. & Fredericq, S. 2003. rbcL gene sequence reveal relationships among north-east Pacific species of Porphyra (Bangiales, Rhodophyta) and a new species, P. aestivalis. Phycol. Res. 51:211-224. https://doi.org/10.1111/j.1440-1835.2003.tb00189.x
  13. Mols-Mortensen, A., Neefus, C. D., Pedersen, P. M. & Brodie, J. 2014. Diversity and distribution of foliose Bangiales (Rhodophyta) in West Greenland: a link between the North Atlantic and North Pacific. Eur. J. Phycol. 49:1-10. https://doi.org/10.1080/09670262.2013.871062
  14. Nelson, W. A., Farr, T. J. & Broom, J. E. S. 2006. Phylogenetic relationships and generic concepts in the red order Bangiales: challenges ahead. Phycologia 45:249-259. https://doi.org/10.2216/05-26.1
  15. Niwa, K., Iida, S., Kato, A., Kawai, H., Kikuchi, N., Kobiyama, A. & Aruga, Y. 2009. Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J. Phycol. 45:493-502. https://doi.org/10.1111/j.1529-8817.2009.00661.x
  16. Niwa, K., Kato, A., Kobiyama, A., Kawai, H. & Aruga, Y. 2008. Comparative study of wild and cultivated Porphyra yezoensis (Bangiales, Rhodophyta) based on molecular and morphological data. J. Appl. Phycol. 20:261-270. https://doi.org/10.1007/s10811-007-9242-z
  17. Niwa, K., Kikuchi, N., Iwabuchi, M. & Aruga, Y. 2004. Morphological and AFLP variation of Porphyra yezoensisUeda form, narawaensis Miura (Bangiales, Rhodophyta). Phycol. Res. 52:180-190.
  18. Niwa, K. & Kobiyama, A. 2009. Simple molecular discrimination of cultivated Porphyra species (Porphyra yezoensis and Porphyra tenera) and related wild species (Bangiales, Rhodophyta). Phycol. Res. 57:299-303. https://doi.org/10.1111/j.1440-1835.2009.00549.x
  19. Niwa, K., Kobiyama, A. & Aruga, Y. 2005. Confirmation of cultivated Porphyra tenera (Bangiales, Rhodophyta) by polymerase chain reaction restriction fragment length polymorphism analyses of the plastid and nuclear DNA. Phycolo. Res. 53:296-302. https://doi.org/10.1111/j.1440-183.2005.00397.x
  20. Odintsova, M. S. & Yurina, N. P. 2002. The mitochondrial genome of protists. Russ. J. Genet. 38:642-655. https://doi.org/10.1023/A:1016087716850
  21. Palumbi, S. R. & Baker, C. S. 1994. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol. Biol. Evol. 11:426-435.
  22. Park, E. -J., Endo, H., Kitade, Y. & Saga, N. 2008. Simple differentiation of two closely related species Porphyra tenera and Porphyra yezoensis (Bangiophyceae, Rhodophyta) based on length polymorphism of actin-related protein 4 gene (ARP4). Fish. Sci. 74:613-620. https://doi.org/10.1111/j.1444-2906.2008.01565.x
  23. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Culture and Collections of Algae. Proc. U.S.-Japan Conference, Japanese Society of Plant Physiology, Hakone, pp. 63-75.
  24. Saunders, G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:1879-1888. https://doi.org/10.1098/rstb.2005.1719
  25. Smith, D. R., Hua, J., Lee, R. W. & Keeling, P. J. 2012. Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture. Mol. Phylogenet. Evol. 65:339-344. https://doi.org/10.1016/j.ympev.2012.06.017
  26. Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols-Mortensen, A., Milstein, D. & Muller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151. https://doi.org/10.1111/j.1529-8817.2011.01052.x
  27. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  28. Yang, E. C., Kim, K. M., Kim, S. Y., Lee, J., Boo, G. H., Lee, J. -H., Nelson, W. A., Yi, G., Schmidt, W. E., Fredericq, S., Boo, S. M., Bhattacharya, D. & Yoon, H. S. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol. Evol. 7:2394-2406. https://doi.org/10.1093/gbe/evv147

Cited by

  1. Organellar Genome Variation and Genetic Diversity of Chinese Pyropia yezoensis vol.6, pp.None, 2018, https://doi.org/10.3389/fmars.2019.00756
  2. Seaweed breeding programs and progress in eastern Asian countries vol.58, pp.5, 2019, https://doi.org/10.1080/00318884.2019.1639436
  3. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.5.14
  4. Seaweed cultivation and utilization of Korea vol.35, pp.2, 2018, https://doi.org/10.4490/algae.2020.35.5.15