DOI QR코드

DOI QR Code

원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition

  • 김도영 (울산과학대학교 전기전자공학부)
  • Kim, Doyoung (School of Electrical and Electronics Engineering, Ulsan College)
  • 투고 : 2018.05.07
  • 심사 : 2018.05.18
  • 발행 : 2018.07.01

초록

SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

키워드

참고문헌

  1. H. Meiling and R.E.I. Schropp, Appl. Phys. Lett., 70, 2681 (1987). [DOI: https://doi.org/10.1063/1.118992]
  2. R. A. Street, D. K. Biegelsen, and J. C. Knights, Phys. Rev. B, 24, 969 (1981). [DOI: https://doi.org/10.1103/PhysRevB.24.969]
  3. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. Cells, 62, 97 (2000). [DOI: https://doi.org/ 10.1016/S0927-0248(99)00140-3]
  4. M. Faraji, S. Gokhale, S. M. Choudhari, and M. G. Takwale, Appl. Phys. Lett., 60, 3289 (1992). [DOI: https://doi.org/10.1063/ 1.106722]
  5. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, Appl. Phys. Lett., 89, 033506 (2006). [DOI: https:// doi.org/10.1063/1.2227629]
  6. K. Ishizaki, A. Motohira, M. De Zoysa, Y. Tanaka, T. Umeda, and S. Noda, IEEE J. Photovoltaics, 7, 950 (2017). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2695524]
  7. G. H. Wang, C. Y. Shi, L. Zhao, H. W. Diao, and W. J. Wang, J. Alloys Compd., 658, 543 (2016). [DOI: https:// doi.org/10.1016/j.jallcom.2015.10.235]
  8. A. S. Gudovskikh, A. V. Uvarov, I. A. Morozov, A. I. Baranov, D. A. Kudryashov, K. S. Zelentsov, A. S. Bukatin, and K. P. Kotlyar, J. Vac. Sci. Technol., A, 36, 02D408 (2018). [DOI: https://doi.org/10.1116/1.5018259]
  9. X. Zhao, D. Li, T. Zhang, B. Conrad, L. Wang, A. H. Soeriyadi, J. Han, M. Diaz, A. Lochtefeld, A. Gerger, I. Perez-Wurfl, and A. Barnett, Sol. Energy Mater. Sol. Cells, 159, 86 (2017). [DOI: https://doi.org/10.1016/j.solmat.2016.08.037]
  10. A. Fedala, C. Simon, N. Coulon, T. Mohammed-Brahim, M. Abdeslam, and A. C. Chami, Phys. Status Solidi C, 7, 762 (2010). [DOI: https://doi.org/10.1002/pssc.200982791]
  11. M. Beaudoin, M. Meunier, and C. J. Arsenault, Phys. Rev. B, 47, 2197 (1993). [DOI: https://doi.org/10.1103/PhysRevB. 47.2197]