• Title/Summary/Keyword: Silane

Search Result 753, Processing Time 0.034 seconds

The Study of Water Stability of MDF Cement Composite by Addition of Silane Coupling Agent (Silane Coupling Agent 첨가에 의한 MDF Cement Composite의 수분안정성 연구)

  • 노준석;김진태;박춘근;오복진;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 1998
  • The effect of silane coupling agents on the water stability of HAC/PVA based MDF cement composites which were modified with urethane and epoxy resin were studied as a function of the functional groups and addition amount of silane coupling agent. According to the composition of polymer matrix the silanes with different functional groups showed the different effectiveness. In case of the only PVA matrix the silane with vinyl functional group was more effective than other silanes. When the epoxy resin was added the silane of epoxy-methodxy group enhanced the flexural strength of dry and wet state more than other. In case of urethane-added MDF cement the silane of diamine group was effective and enhanced the water sta-bility fo MDF cement composite more and more as the addition amount of silane increased, Especially in case of warm-presed composite the effect of silane was enhanced By addition of 2wt% of silane with 야-amine group the flexural strength of urethane-added composites were enhanced by 20% more in dry state 40-70% in wet state in accord with the porosity analysis. The flexural strength of the poxy resin-added MDF cement composite was increased by addition of 1wt% and 2wt% silane of epoxy-methoxy group However the addition of 4wt% of silane decreased the flexural strength of dry and wet state by formation of closed pore in the polymer matrix.

  • PDF

Amino Silane, Vinyl Silane, TESPD, ZS(TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber(CIIR) Compounds Part I: Effects on Hard Clay/Carbon Black Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, TESPD, and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/hard clay/carbon black (CB) compound and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. In hard clay/CB filled system, only ZS silane added compound shows both lower Mooney viscosity and extrusion torque while vinyl silane added compound showed only a lower extrusion torque. All the ZS added compounds showed the lowest viscosity among them. The silane added compounds showed an increased modulus. In 'fatigue to failure' count test, the ZS added compound showed superior counts compared to other silane (amino, vinyl, TESPD) added compounds. The mechanical properties were significantly increased when the S2 and ZS were added into CIIR/hard clay/CB compound. The ZS added compounds showed a significant improvement on elongation modulus.

Influence of Silane Coupling Agent on Properties of Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.285-291
    • /
    • 2000
  • Influence of silane coupling agent, bis-(3-(triethoxisilyl)-propyl)-tetrassulfide, on cure characteristics and bound rubber content of filled styrene-butadiene rubber (SBR) compounds and on physical properties of the vulcanizates was studied. Carbon black-filled and silica-filled compounds were compared. Content of the bound rubber increased with increased content of the silane coupling agent and this trend was shown more clearly in the silica-filled compounds. Optimum cure time of the carbon black-filled compound increased with increase of the silane content, while that of the silica-filled one decreased. Cure rate of the carbon black-filled compound became slower as the silane content increased while that of the silica-filled one became faster. By increasing the silane content, the minimum torque decreased and the delta torque increased. Physical properties of the silica-filled vulcanizate were found to be improved by adding the silane coupling agent. However, for the carbon black-filled vulcanizates, the tensile strength and tear resistance decreased with increase of the silane content. The differences between the carbon black-filled and silica-filled compounds were explained by difference in the reactivities of the fillers with the silane.

  • PDF

The Effect of Silane Compound on the Cure Reaction and Mechanical Properties of PEG, PCP Binder for Propellant (Silane화합물이 추진제용 PEG, PCP바인더의 경화 및 특성에 미치는 영향)

  • 홍명표
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.1-5
    • /
    • 2000
  • The silane compounds as a coupling agent have been used in the propellant in order to enhance the mechanical property and lower the viscosity. They showed great effects in the PEG propellant. In PCP propellant, however, the silane compounds not only made a severe cure problem but also deteriorated the mechanical property. In this study, TESPN as a silane compound was applied in PEG and PCP binder for finding above factors. The main reason was that the main chains of PCP were broken due to the trans-esterification reaction of ester groups in PCP and alchol which was produced by reacting silane compounds and moisture in the solution of liquid binder.

  • PDF

The Emulsification of Silane as Water REpellent for Concrete (콘크리트 발수제용 Silane의 유화)

  • 황인동;염희남;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.760-767
    • /
    • 2000
  • Recently, the protection of construction is demanded with environmental pollution. These protect modes are use of concrete admixture, coat of protective polymer and impregnate of surface with chemicals etc. The most widely used impregnation is economical and effective. The define of Impregnation for construction protect is reacted in and consolidated substrate after absorbed. The impregnation agents are Polyesters, Acrylic monomers, Epoxy and Silicone derivatives. Commonly, because the Silane has good water repellency and environmental advantages that it widely used to water proofing agents, dampproofing agents and absorption reducer for concrete of bridges. When application of Silane, it occurs pollution and harmfulness as included organic solvent. The manufactures have tired to emulsification of Silane for the reducing of the defects. The Silane emulsion is vary unstable and does not stored long periods, and it is diminished in good properties with internal reaction. In this study we tried to emulsification of Silane for effectiveness improvement and reduce pollution and hazard and discussed properties variation of emulsion. The Silane emulsions are achieved emulsifying with W/O and O/W type surfactants. It used 0.24% PVA as protective colloid and stable phase is creamy. The creamy Silane emulsion performance as the penetration depth and water absorption rate are above 4 mm and below 0.1. It stable about 6 month at room temperature.

  • PDF

Amino Silane, Vinyl Silane, TESPD, ZS(TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber(CIIR) Compounds Part II: Effects on Soft Clay/Carbon Black Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, TESPD, and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB). The vulcanization characteristics, the processability, and the mechanical properties are measured. In soft clay/CB filled CIIR system, there are no significant changes in Mooney viscosity among compounds. Vinyl silane added compound shows a low extrusion torque. All the silane added compounds shows an increased modulus. The mechanical properties are significantly increased when the S2 is added into CIIR/soft clay/CB compounds.

Low Temperature Vulcanization of Chlorosulfonated Polyethylene (Chlorosulfonated Polyethylene의 저온가황반응(低溫加黃反應))

  • Park, Keun-Sik;Park, Sung-Ha;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.27 no.4
    • /
    • pp.255-261
    • /
    • 1992
  • Chlorosulfonated polyethylene(CSM) was moisture-cure after treating them with silane coupling agents such as ${\gamma}-mercapto$ propyl trimethoxy silane, ${\gamma}-glycidoxy$ propyl triethoxy silane and methyl triethoxy silane, 3-(trimethoxy silyl) propyl methacrylate and 3-thiocyanopropyl triethoxy silane. The cure reaction is composed two steps. The first is the reaction between chlorosulfonyl groups of CSM and silane coupling agents. The second is the formation of cross-links which are siloxane linkage. The linkage is formed by the condensation of silanol groups which are produced by the hydrolysis of alkoxysilyl groups. CSM was mixed with MPS etc., and dilaurate dilaurate as catalyst on two open mill and the compounds were lured in hot water at $70^{\circ}C$ Physical properties of moisture-cured CSM was measured. CSM was effectively moisture-cured and r-mercapto propyl trimethoxy silane and r-glycidoxy propyl trimethoxy silane were capable of the vulcanizing agents.

  • PDF

The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics

  • Sarahneh, Omar;Gunal-Abduljalil, Burcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.292-303
    • /
    • 2021
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of silane and universal adhesive applications on the micro-shear bond strength (µSBS) of different resin-matrix ceramics (RMCs). MATERIALS AND METHODS. A total of 120 slides (14 × 12 × 1 mm) were produced from 5 different RMC materials (GC Cerasmart [GC]; Brilliant Crios [BC]; Grandio blocs [GB]; Katana Avencia [KA]; and KZR-CAD HR 2 [KZR]) and sandblasted using 50 ㎛ Al2O3 particles. Each RMC material was divided into six groups according to the surface conditioning (SC) method as follows: control (G1), silane primer (G2), silane-free universal adhesive (G3), silane-containing universal adhesive (G4), silane primer and silane-free universal adhesive (G5), and silane primer and silane-containing universal adhesive (G6). Three cylindric specimens made from resin cement (Bifix QM) were polymerized over the treated surface of each slide (n = 12). After thermal cycling (10000 cycles, 5 - 55℃), µSBS test was performed and failure types were evaluated using a stereomicroscope. Data were analyzed using 2-way ANOVA and Tukey tests (α = .05). RESULTS. µSBS values of specimens were significantly affected by the RMC type and SC protocols (P < .001) except the interaction (P = .119). Except for G2, all SC protocols showed a significant increase in µSBS values (P < .05). For all RMCs, the highest µSBS values were obtained in G4 and G6 groups. CONCLUSION. Only silane application did not affect the µSBS values regardless of the RMC type. Moreover, the application of a separate silane in addition to the universal adhesives did not improve the µSBS values. Silane-containing universal adhesive was found to be the best conditioning method for RMCs.

Studios on the Thermal Properties of Silane Crosslinked Polyethylene Prepared by Various Crosslinking Conditions (Silane 가교 PE의 가교조건에 따른 열적특성 변화에 관한 연구)

  • Sohn, Ho-Soung;Suh, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1036-1043
    • /
    • 1994
  • The silane crosslinking method was applied for the crosslinking of polyethylene (PE). Crosslinking of PE was performed by, first grafting vinyltrimethoxysilane(VTMOS) to the main chain of PE using an extruder at $200{\sim}210^{\circ}C$, followed by exposure to three different silane crosslinking conditions (1. immersed in $80^{\circ}C$ water, 2. at $80^{\circ}C$ air forced convection oven, 3. exposed to air at room temperature ). The thermal characteristic changes of PE resins with respect to the silane crosslinking conditions were studied by measuring the crystalline melting temperature, density and crosslinking reaction rate. Because silane crosslinking was carried out at solid state, crystalline melting temperature, crystallinity, crystal growth rate, crosslinking reaction rate and the change in the density of silane crosslinked PE were affected by crosslinking condition and the type of base resin. The properties of silane crosslinked PE were different from those of Peroxide crosslinked PE which was crosslinked at the molten state. It was found, from the result of DSC analysis, that silane crosslinked linear low density polyethylene(LLDPE) crosslinked at room temperature had no secondary melting peak because the crosslinking reaction proceeds slowly as the crystalline grows. After crystallization, the melting point of PE was lowered by crystalline interruption of crosslinked site.

  • PDF

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF