DOI QR코드

DOI QR Code

Comparative study on quality of scanned images from varying materials and surface conditions of standardized model for dental scanner evaluation

치과용 스캐너 평가를 위한 국제표준모델의 재료 및 표면 상태에 따른 스캔 영상 결과물 비교 연구

  • Park, Ju-Hee (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Seol, Jeong-Hwan (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jun Jae (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Seung-Pyo (Department of Oral Anatomy, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • 박주희 (서울대학교 치의학대학원 치과보철학교실) ;
  • 설정환 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이준재 (서울대학교 치의학대학원 구강해부학교실) ;
  • 이승표 (서울대학교 치의학대학원 구강해부학교실) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학교실)
  • Received : 2018.04.02
  • Accepted : 2018.05.08
  • Published : 2018.06.30

Abstract

Purpose: The purpose of this study is to evaluate the image acquisition ability of intraoral scanners by analyzing the comprehensiveness of scanned images from standardized model, and to identify problems of the model. Materials and Methods: Cast models and 3D-printed models were prepared according to international standards set by ISO12836 and ANSI/ADA no. 132, which were then scanned by model scanner and two different intraoral scanners (TRIOS3 and CS3500). The image acquisition performance of the scanners was classified into three grades, and the study was repeated with varying surface conditions of the models. Results: Model scanner produced the most accurate images in all models. Meanwhile, CS3500 showed good image reproducibility for angled structures and TRIOS3 showed good image reproducibility for rounded structures. As for model ingredients, improved plaster model best reproduced scan images regardless of the type of scanner used. When limited to 3D-printed model, powdered surface condition resulted in higher image quality. Conclusion: When scanning structures beyond FOV (field of view) in standardized models (following ISO12836 and ANSI/ADA 132), lack of reference points to help distinguish different faces confuses the scanning and matching process, resulting in inaccurate display of images. These results imply the need to develop a new standard model not confined to simple pattern repetition and symmetric structure.

목적: 본 연구는 현재 시판되고 있는 구강스캐너를 사용하여 구강스캐너 정확도 평가를 위해 국제표준이 제안하고 있는 모형의 스캔이미지 획득이 가능한 지 분석하고, 이를 통해 표준모델이 가지고 있는 문제점을 파악하는 데 있다. 연구 재료 및 방법: ISO12836과 ANSI/ADA no.132에서 규정하는 국제표준을 참고하여 3D 프린터기를 이용하여 모델을 제작하였으며, 모델스캐너와 두 가지 구강스캐너를 이용하여 스캔을 하였다. 스캔이미지 획득 정도를 3등급으로 분류하여 스캐너의 성능을 비교하였으며, 모델 표면의 상태에 따른 이미지 획득 능력도 비교하였다. 결과: 모델 스캐너가 모든 모델에서 가장 우수한 이미지를 얻을 수 있었으며 TRIOS3는 둥근 형태의 구조물, CS3500은 각진 형태의 구조물에 대한 이미지 재현이 좋은 결과를 보였다. 표준 모델의 표면상태에 따른 스캔이미지 재현에서는 초경석고 모델이 스캐너 종류와 관계없이 가장 우수하였다. 3D 프린팅 모델의 경우, 표면에 파우더 처리를 한 모델에서 가장 우수한 스캔이미지를 얻을 수 있었다. 결론: ISO12836과 ANSI/ADA 132의 표준모델의 경우, 구강스캐너의 field of view (FOV)를 벗어나는 구조물을 스캔할 때 서로 다른 면인 것을 구분하는 기준점이 존재하지 않게 되면 연속적인 스캔 및 정합과정에서 정확한 이미지를 나타내지 못한다는 것을 알 수 있었다. 그러므로 단순한 패턴의 반복과 대칭구조를 가지지 않는 새로운 표준모델이 필요하다고 여겨진다.

Keywords

References

  1. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  2. Schleyer TK. Digital dentistry in the computer age. J Am Dent Assoc 1999;130:1713-20. https://doi.org/10.14219/jada.archive.1999.0127
  3. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  4. Davidowitz G, Kotick PG. The use of CAD/CAM in dentistry. Dent Clin North Am 2011;55:559-70. https://doi.org/10.1016/j.cden.2011.02.011
  5. Murad SM, Al-Mulla A. Accuracy of measurements made on digital and study models (A comparative study). MDJ 2010;7:71-82.
  6. Patzelt SB, Lamprinos C, Stampf S, Att W. The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc 2014;145:542- 51. https://doi.org/10.14219/jada.2014.23
  7. Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wave front sampling. J Dent 2010;38:553-9. https://doi.org/10.1016/j.jdent.2010.03.015
  8. Choi JH, Lim YJ, Lee WJ, Han JS, Lee SP. Review of recent developments for intra-oral scanners. J Dent Rehabil Appl Sci 2015;31:112-25. https://doi.org/10.14368/jdras.2015.31.2.112
  9. Lee JJ, Park JY, Bae SY, Jeon JH, Kim JH, Kim WC. Evaluation of the Model Accuracy according to Three Types of Dental Scanner. J Dent Hyg Sci 2015;15:226-31. https://doi.org/10.17135/jdhs.2015.15.2.226
  10. Schepke U, Meijer HJ, Kerdijk W, Cune MS. Digital versus analog complete-arch impressions for single-unit premolar implant crowns: Operating time and patient preference. J Prosthet Dent 2015;114:403-6. https://doi.org/10.1016/j.prosdent.2015.04.003
  11. Reddy MS, Mayfield-donahoo T, Vanderven FJ, Jeffcoat MK. A comparison of the diagnostic advantages of panoramic radiography and computed tomography scanning for placement of root form dental implants. Clin Oral Implants Res 1994;5:229- 38. https://doi.org/10.1034/j.1600-0501.1994.050406.x
  12. Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal ft of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent 2015;114:554-9. https://doi.org/10.1016/j.prosdent.2015.04.001
  13. Ueda K, Beuer F, Stimmelmayr M, Erdelt K, Keul C, Güth JF. Fit of 4-unit FDPs from CoCr and zirconia after conventional and digital impressions. Clin Oral Investig 2016;20:283-9. https://doi.org/10.1007/s00784-015-1513-5
  14. Nedelcu RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: an in vitro comparison based on 3-dimensional analysis. J Prosthet Dent 2014;112:1461-71. https://doi.org/10.1016/j.prosdent.2014.05.027
  15. Patzelt SB, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig 2014;18:1687-94. https://doi.org/10.1007/s00784-013-1132-y
  16. Patzelt SB, Vonau S, Stampf S, Att W. Assessing the feasibility and accuracy of digitizing edentulous jaws. J Am Dent Assoc 2013;144:914-20. https://doi.org/10.14219/jada.archive.2013.0209
  17. Papaspyridakos P, Gallucci GO, Chen CJ, Hanssen S, Naert I, Vandenberghe B. Digital versus con- ventional implant impressions for edentulous patients: accuracy outcomes. Clin Oral Implants Res 2016;27:465-72.
  18. Lee GT, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models. J Korean Acad Dent Technol 2012;34:213-20. https://doi.org/10.14347/kadt.2012.34.3.213
  19. Yuzbasioglu E, Kurt H, Turunc R, Bilir H. Com- parison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014;14:10. https://doi.org/10.1186/1472-6831-14-10
  20. Kim JH, Kim KB. Evaluation of dimensional stability of digital dental model fabricated by impression scanning method. J Dent Hyg Sci 2014;14:15- 21.
  21. Kim SH, Kim JH, Kim CK. Reliability and accuracy of digital impression obtained from CS-3500 intraoral scanner. J Dent Hyg Sci 2015;15:673-8. https://doi.org/10.17135/jdhs.2015.15.5.673
  22. ISO 12836:2015 Dentistry - Digitizing devices for CAD/CAM systems for indirect dental restorations - Test methods for assessing accuracy.
  23. ANSI/ADA. Standard No. 132, Scanning accuracy of dental chairside and laboratory CAD/CAM. ADA 132-2015.

Cited by

  1. 단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교 vol.57, pp.2, 2019, https://doi.org/10.4047/jkap.2019.57.2.102
  2. Influence of Applied Liquid-Type Scanning-Aid Material on the Accuracy of the Scanned Image: An In Vitro Experiment vol.13, pp.9, 2018, https://doi.org/10.3390/ma13092034