DOI QR코드

DOI QR Code

Complete genome sequence of biofilm-producing strain Staphylococcus xylosus S170

생물막 생성 Staphylococcus xylosus S170 균주의 유전체 분석연구

  • Hong, Jisoo (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Roh, Eunjung (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
  • 홍지수 (농촌진흥청 국립농업과학원) ;
  • 노은정 (농촌진흥청 국립농업과학원)
  • Received : 2018.04.17
  • Accepted : 2018.05.15
  • Published : 2018.06.30

Abstract

Here we report the complete genome sequence of Staphylococcus xylosus S170, strong biofilm-producing strain, which comprised a single circular 2,910,005 bp chromosome and 32.97% G + C content. The genome included 2,674 protein-coding sequences, 22 rRNA genes, and 57 tRNA genes. Gene analysis of S. xylosus S170 could contribute to better understanding of biofilm-forming mechanisms.

Staphylococcus xylosus는 일반적으로 포유동물의 피부에 존재하며 식품가공설비와 의료기기 등에서도 발견이 보고되었다. 본 연구에서는 강력한 생물막 생성 특성을 가지는 Staphylococcus xylosus S170의 전체 유전체 서열을 분석하여 보고한다. 이 유전체는 2,910,005 bp 크기, 2,674개의 단백질 코딩 서열과 22개의 rRNA, 57개의 tRNA유전자를 포함한다. 본 연구에서 제공하는 유전체 정보는 생물막 관련 유전자 분석으로 생물막 형성 기작을 좀 더 잘 이해하는데 도움이 될 수 있다.

Keywords

References

  1. Bingel, S.A. 2002. Pathology of a mouse model of X-linked chronic granulomatous disease. Contemp. Top. Lab. Anim. Sci. 41, 33-38.
  2. Conrad, S.A. and West, B.C. 1984. Endocarditis caused by Staphylococcus xylosus associated with intravenous drug abuse. J. Infect. Dis. 149, 826-827. https://doi.org/10.1093/infdis/149.5.826
  3. Dordet-Frisoni, E., Gaillard-Martinie, B., Talon, R., and Leroy, S. 2008. Surface migration of Staphylococcus xylosus on low-agar media. Res. Microbiol. 159, 263-269. https://doi.org/10.1016/j.resmic.2008.02.003
  4. Fthenakis, G.C., Marples, R.R., Richardson, J.F., and Jones, J.E. 1994. Some properties of coagulase-negative staphylococci isolated from cases of ovine mastitis. Epidemiol. Infect. 112, 171-176. https://doi.org/10.1017/S0950268800057538
  5. Kim, J., Hong, J., Lim, J.A., Heu, S., and Roh, E. 2018. Improved multiplex PCR primers for rapid identification of coagulase-negative staphylococci. Arch. Microbiol. 200, 73-83. https://doi.org/10.1007/s00203-017-1415-9
  6. Koksal, F., Yasar, H., and Samasti, M. 2009. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol. Res. 164, 404-410. https://doi.org/10.1016/j.micres.2007.03.004
  7. Otto, M. 2013. Staphylococcal infections: Mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64, 175-188. https://doi.org/10.1146/annurev-med-042711-140023
  8. Planchon, S., Gaillard-Martinie, B., Dordet-Frisoni, E., Bellon-Fontaine, M.N., Leroy, S., Labadie, J., Hebraud, M., and Talon, R. 2006. Formation of biofilm by Staphylococcus xylosus. Int. J. Food Microbiol. 109, 88-96. https://doi.org/10.1016/j.ijfoodmicro.2006.01.016
  9. Ploneczka-Janeczko, K., Lis, P., Bierowiec, K., Rypula, K., and Chorbinski, P. 2014. Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva. Vet. Res. Commun. 38, 337-346. https://doi.org/10.1007/s11259-014-9615-0