DOI QR코드

DOI QR Code

원자력 시설 주변 환경 감시를 위한 토양 중 우라늄 동위원소 신속 분석법 확립

Establishing of a rapid analytical method on uranium isotopic ratios for the environmental monitoring around nuclear facilities

  • 박지영 (한국원자력연구원 원자력환경실) ;
  • 임종명 (한국원자력연구원 원자력환경실) ;
  • 이현우 (한국원자력연구원 원자력환경실) ;
  • 이완로 (한국원자력연구원 원자력환경실)
  • Park, Ji-Young (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lim, Jong-Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Hyun-Woo (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Wanno (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
  • 투고 : 2018.05.11
  • 심사 : 2018.06.01
  • 발행 : 2018.06.25

초록

The uranium isotopic ratio in environmental samples around nuclear facilities is important because it reveals information regarding illegal activities or anthropogenic pollution. Determination of uranium isotopes, however, is a challenging task requiring much labor and time because of the complex separation procedures and lengthy process. In this study, a rapid determination method for uranium isotopes in environmental samples was developed using. The sample was completely decomposed using the alkali fusion method. The separation procedure using extraction chromatography (UTEVA) was simplified in a single step without any further removal process for Si and major matrix elements. The established method can be completed within 3 h from sample dissolution to ICP-MS measurement. Most matrix elements and uranium isotopes in the soil samples were well separated and purified. Five types of were used to assess the method's accuracy and precision for a rapid uranium analysis method. The analytical accuracy for all CRM samples ranged from 95.1 % to 97.8 %, and the relative standard deviation was below 3.9 %. From the analytical results, one may draw conclusions that the evaluated method for uranium isotopes using alkali-fusion, the extraction chromatography process, and ICP-MS measurements is fast and fairly reliable owing to its recovering efficiencies. Thus, it is expected that the evaluated method can contribute to the improvement of environmental monitoring ability.

키워드

참고문헌

  1. Z. Karpas, 'Analytical chemistry of Uraium', 1st Ed., CRC Press, NY, 2014.
  2. R. Taylor and S. M. McLennan, 'Continental Crust: Its Composition and Evaluation', Blackwell Scientific Publishers, London, 1985.
  3. J. Meija, T. B Coplen, M. Berglund, W. A. Brand, P. D. Bievre, M. Groning, N. E. Holden, J. Irrgeher. R. D. Loss, T. Walczyk, and T. Prohaska, "Isotopic Compositions of Elements 2013(IUPAC Technical Report)", Pure Appl. chem., 88(3), 293-306 (2016). https://doi.org/10.1515/pac-2015-0503
  4. T. P. Rao, P. Metilda, and J. M. Gladis, Talanta, 68, 1047-1064 (2006). https://doi.org/10.1016/j.talanta.2005.07.021
  5. A. Dirican and M. Sahin, Appl Radiat Isot., 109, 189-192 (2016). https://doi.org/10.1016/j.apradiso.2015.11.066
  6. K. H Park, C. W. Nam, and H. H. Kim, J. of Korean Inst. of Resources Recycling, 24(1), 3-11, (2015).
  7. T. R. Dulski, 'A Manual for Chemical Analysis of Metals', 1st Ed., ASTM, PA, 1996.
  8. M. Luoa, S. Xing, Y. Yanga, L. Song, Y. Ma, Y. Wang, X. Daia, and S. Happel, J. Environ. Radioact., 187, 73-80 (2018). https://doi.org/10.1016/j.jenvrad.2018.01.028
  9. I. Croudace, P. Warwick, R. Taylor, and S. Dee, Anal. Chim. Acta., 371, 217-225 (1998). https://doi.org/10.1016/S0003-2670(98)00353-5
  10. N. Vajda and C. K. Kim, J. Radioanal. Nucl. Chem. 284, 341-366 (2010). https://doi.org/10.1007/s10967-010-0475-y
  11. C.W. Sill, Health Phys., 29, 619-626 (1975). https://doi.org/10.1097/00004032-197510000-00019
  12. S. Uchida, R. G. Tenorio, K. Tagami, and M. G. Leon, J. Anal. At. Spectrom., 15, 889-892 (2000). https://doi.org/10.1039/B001332N
  13. K. S. Song et al., 'Establishment of Ultra Trace Nuclear Material Analysis System', Korea Atomic Energy Research Institute, KAERI/RR-3710/2013, 2014.
  14. K. H. Chung el al., 'Environmental Radiation Monitoring Around the Nuclear Facilities', Korea Atomic Energy Research Institute, KAERI/RR-4204, 2017.
  15. J. Y. Yoon et al., 'The Annual Report on the Environmental Radiological Surveillance and Assessment around the Nuclear Facilities', Korea Institute of Nuclear Safety, KINS/AR-140, 2016.
  16. Korea Electric Power Corporation Nuclear Fuel, 'Envrionmetal Radiation Monitoring around Korea Nuclear Fuel Company', KEPCO NF-2016, 2017.
  17. Envrionmetal Radiation Monitoring around Korea Nuclear Fuel Company
  18. G. Choppala, A. Kunhikrishnan, B. Seshadri, J. H. Park, R. Bush, and N. Bolanc, J. Geochem. Explor., 184, 255-260 (2018). https://doi.org/10.1016/j.gexplo.2016.07.012
  19. American Society for Testing and Materials International, 'Standard Test Method for Radiochemical Determination of Uranium Isotopes in Soil by Alpha Spectrometry', ASTM Standard C1000-11, 2011.
  20. US Environmental Protection Agency, 'Iosotopical determination of plutonium, uranium, and thorium in water, soil, and biological tissue', EPA method EMSL-33, 1982.
  21. US Environmental Protection Agency, 'Rapid Method for Fusion of Soil and Soil-Related Matrices Prior to Americium, Plutonium, and Uranium Analyses for Environmental Remediation Following Radiological Incidents', EPA-600-R-12-636, 2012.
  22. T. H. Elmer and M.E Nordberg, J. Am. Ceram. Soc., 41(12), 517-520 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12907.x
  23. E. P. Horwitz, M. L. Dietz, R. Chiarizia, and G. Diamond, Anal. Chim.Acta., 266, 25-37 (1992). https://doi.org/10.1016/0003-2670(92)85276-C
  24. J. J. Charlton, M. J. Sepaniak, A. K. Sides, T. G. Schaaff, D. K. Mann, and J. A. Bradshaw, J. Anal. At. Spectrom., 28, 711-718 (2013). https://doi.org/10.1039/c3ja30352g
  25. A. Fujiwara, Y. Kameo, A. Hoshi, T. Haraga, and M. Nakashima, J. Chromatogr. A., 1140, 163-167 (2007). https://doi.org/10.1016/j.chroma.2006.11.084
  26. S. L. Maxwell, Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS, US Department of Energy Report, WSRC-MS-98-00122, 1998.
  27. International Atomic Energy Agency, ALMERA Proficiency Test: Determination of Natural and Artificial Radionuclides in Soil and Water, IAEA-TEL-2011-04, 2011.
  28. Thompson M, Wood R. Pure and R. Wood, The International harmonized protocol for the proficiency testing of (chemical) analytical laboratories, Pure Appl. Chem., 65, 2123-2144, 2006.
  29. C. C. Shen, R. L. Edwards, H. Cheng, J. A. Dorale, R. B. Thomas, S. B. Moran, S. E. Weinstein, and H. N. Edmonds, Chem. Geol., 185, 165-178 (2002). https://doi.org/10.1016/S0009-2541(01)00404-1
  30. J. M. Lim, H. Lee, C. J. Kim, M. Jang, J. Y Park, and K. H Chung, Anal. Sci. Tech., 30(5), 252-261 (2017). https://doi.org/10.5806/AST.2017.30.5.252
  31. T. L. Spano, A. Simonetti, E. Balboni, C. Dorais, and P. C. Burns, Appl. Geochem., 87, 277-285 (2017).
  32. P. J. Potts, 'A handbook of silicate rock analysis', 1st Ed., p463, Blackie & Sons, London, 1987.