DOI QR코드

DOI QR Code

CENTROAFFINE GEOMETRY OF RULED SURFACES AND CENTERED CYCLIC SURFACES IN ℝ4

  • Yang, Yun (Department of Mathematics Northeastern University) ;
  • Yu, Yanhua (Department of Mathematics Northeastern University)
  • Received : 2017.09.05
  • Accepted : 2018.03.27
  • Published : 2018.07.01

Abstract

In this paper, we get several centroaffine invariant properties for a ruled surface in ${\mathbb{R}}^4$ with centroaffine theories of codimension two. Then by solving certain partial differential equations and studying a centroaffine surface with some centroaffine invariant properties in ${\mathbb{R}}^4$, we obtain such a surface is centroaffinely equivalent to a ruled surface or one of the flat centered cyclic surfaces. Furthermore, some centroaffine invariant properties for centered cyclic surfaces are considered.

Keywords

References

  1. W. Blaschke, Vorlesungen uber Differentialgeometrie II, Affine Differentialgeometrie, Springer, Berlin, 1923.
  2. H. Furuhata, Minimal centroaffine immersions of codimension two, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 1, 125-134.
  3. A. M. Li, U. Simon, and G. S. Zhao, Global Affine Differential Geometry of Hypersurfaces, De Gruyter Expositions in Mathematics, 11, Walter de Gruyter & Co., Berlin, 1993.
  4. H. L. Liu, Classification of surfaces in $R^3$ which are centroaffine-minimal and equiaffineminimal, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), no. 5, 577-583.
  5. H. L. Liu, Indefinite equi-centroaffinely homogeneous surfaces with vanishing Pick-invariant in $R^4$, Hokkaido Math. J. 26 (1997), no. 1, 225-251. https://doi.org/10.14492/hokmj/1351257816
  6. H. L. Liu, Equi-centroaffinely homogeneous surfaces with vanishing Pick invariant in $R^4$, Proceeding of 1-st Non-Othodox School on Nonlinearity & Geometry (1998), 335-340.
  7. H. Liu and S. D. Jung, Hypersurfaces which are equiaffine extremal and centroaffine extremal, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 4, 555-571. https://doi.org/10.1007/s00574-007-0060-3
  8. K. Nomizu and T. Sasaki, Centroaffine immersions of codimension two and projective hypersurface theory, Nagoya Math. J. 132 (1993), 63-90. https://doi.org/10.1017/S0027763000004645
  9. K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Tracts in Mathematics, 111, Cambridge University Press, Cambridge, 1994.
  10. R. Walter, Centroaffine differential geometry: submanifolds of codimension 2, Results Math. 13 (1988), no. 3-4, 386-402. https://doi.org/10.1007/BF03323254
  11. C. P. Wang, Centroaffine minimal hypersurfaces in $R^{n+1}$, Geom. Dedicata 51 (1994), no. 1, 63-74. https://doi.org/10.1007/BF01264101
  12. Y. Yang and H. Liu, Minimal centroaffine immersions of codimension two, Results Math. 52 (2008), no. 3-4, 423-437. https://doi.org/10.1007/s00025-008-0321-5
  13. Y. Yang, Y. Yu, and H. Liu, Centroaffine translation surfaces in ${\mathbb{R}}^3$, Results Math. 56 (2009), no. 1-4, 197-210. https://doi.org/10.1007/s00025-009-0385-x
  14. Y. Yang, Y. Yu, and H. Liu, Linear Weingarten centroaffine translation surfaces in ${\mathbb{R}}^3$, J. Math. Anal. Appl. 375 (2011), no. 2, 458-466. https://doi.org/10.1016/j.jmaa.2010.09.052
  15. Y. Yang, Y. Yu, and H. Liu, Flat centroaffine surfaces with the degenerate second fundamental form and vanishing Pick invariant in ${\mathbb{R}}^4$, J. Math. Anal. Appl. 397 (2013), no. 1, 161-171. https://doi.org/10.1016/j.jmaa.2012.07.047
  16. Y. Yang, Y. Yu, and H. Liu, Flat centroaffine surfaces with parallel second fundamental form in ${\mathbb{R}}^4$, Appl. Math. Comput. 243 (2014), 775-788.
  17. Y. Yu, Y. Yang, and H. Liu, Centroaffine ruled surfaces in ${\mathbb{R}}^3$, J. Math. Anal. Appl. 365 (2010), no. 2, 683-693. https://doi.org/10.1016/j.jmaa.2009.12.001