DOI QR코드

DOI QR Code

A ONE-PARAMETER FAMILY OF TOTALLY UMBILICAL HYPERSPHERES IN THE NEARLY KÄHLER 6-SPHERE

  • Received : 2017.09.01
  • Accepted : 2017.12.27
  • Published : 2018.07.01

Abstract

We discuss two kinds of almost contact metric structures on a one-parameter family of totally umbilical hyperspheres in the nearly $K{\ddot{a}}hler$ unit 6-sphere $S^6$.

Keywords

References

  1. J. Bae, J. H. Park, K. Sekigawa, and W. Shin, Hypersurfaces in a quasi Kahler manifold, Balkan J. Geom. Appl. 22 (2017), no. 2, 13-20.
  2. J. Berndt, J. Bolton, and L. M. Woodward, Almost complex curves and Hopf hypersurfaces in the nearly Kahler 6-sphere, Geom. Dedicata 56 (1995), no. 3, 237-247. https://doi.org/10.1007/BF01263564
  3. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  4. Y. Chai, J. Kim, J. H. Park, K. Sekigawa, and W. Shin, Notes on quasi contact metric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62 (2016), no. 2, vol. 1, 349-359.
  5. S. Deshmukh and F. R. Al-Solamy, Hopf hypersurfaces in nearly Kaehler 6-sphere, Balkan J. Geom. Appl. 13 (2008), no. 1, 38-46.
  6. J. H. Kim, J. H. Park, and K. Sekigawa, A generalization of contact metric manifolds, Balkan J. Geom. Appl. 19 (2014), no. 2, 94-105.
  7. J. H. Park, K. Sekigawa, and W. Shin, A remark on quasi contact metric manifolds, Bull. Korean Math. Soc. 52 (2015), no. 3, 1027-1034. https://doi.org/10.4134/BKMS.2015.52.3.1027
  8. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J. 6 (1983), no. 2, 174-185. https://doi.org/10.2996/kmj/1138036713