참고문헌
- F. Akhiat, C. Castaing, and F. Ezzaki, Some various convergence results for multivalued martingales, in Advances in mathematical economics. Volume 13, 1-33, Adv. Math. Econ., 13, Springer, Tokyo, 2010.
- A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Pol. Acad. Sci. Math. 45 (1997), no. 2, 139-150.
- A. Amrani, C. Castaing, and M. Valadier, Convergence in Pettis norm under extreme point condition, Vietnam J. Math. 26 (1998), no. 4, 323-335.
-
I. Assani and H.-A. Klei, Parties decomposables compactes de
$L^1_E$ , C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 16, 533-536. - G. Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15-36. https://doi.org/10.1080/01630568908816288
- C. Castaing, F. Ezzaki, and C. Hess, Convergence of conditional expectations for unbounded closed convex random sets, Studia Math. 124 (1997), no. 2, 133-148.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. Vol. 580, 1977.
- R. M. Dudley, Real Analysis and Probability, revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002.
- G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia of Mathematics and its Applications, 47, Cambridge University Press, Cambridge, 1992.
- K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), no. 4, 329-360. https://doi.org/10.1023/A:1026547222209
- M. El Harami and F. Ezzaki, General Pettis conditional expectation and convergence theorems, Int. J. Math. Stat. 11 (2012), no. 1, 91-111.
- F. Ezzaki, A general dominated convergence theorem for unbounded random sets, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 3, 353-361.
- A. Faik, Contribution a l'analyse des multifonctions et a l'etude de quelques problemes d'evolution, These de doctorat, Montpellier II, 1995.
- C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), no. 1, 39-58. https://doi.org/10.2989/16073600609486148
- C. Hess, Quelques resultats sur la mesurabilite des multifonctions a valeurs dans un espace metrique separable, in Seminaire d'analyse convexe, Vol. 16, Exp. 1, 43 pp, Univ. Sci. Tech. Languedoc, Montpellier, 1986.
- C. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), no. 1, 226-249. https://doi.org/10.1016/0022-247X(90)90275-K
- F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182. https://doi.org/10.1016/0047-259X(77)90037-9
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397-403.
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585. https://doi.org/10.1016/0001-8708(69)90009-7
- K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), no. 2, 151-173. https://doi.org/10.4064/sm-64-2-151-174
- J. Neveu, Martingales a temps discret, Masson et Cie, editeurs, Paris, 1972.
- N. S. Papageorgiou, Convergence theorems for set-valued conditional expectations, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 97-104.
- V. I. Rybakov, Conditional mathematical expectations for functions that are integrable in the sense of Pettis, Mat. Zametki 10 (1971), 565-570.
- M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp.
- Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807-827. https://doi.org/10.1090/S0002-9947-1994-1154544-X
- H. Ziat, Convergence des suites adaptees multivoques application a la loi forte des grands nombres multivoque, These de doctorat, Montpellier II, 1993.