DOI QR코드

DOI QR Code

PETTIS CONDITIONAL EXPECTATION OF CLOSED CONVEX RANDOM SETS IN A BANACH SPACE WITHOUT RNP

  • Akhiat, Fattah (Laboratoire D'Analyse, Geometrie et ApplicationsDepartement de MathematiquesFaculte des Sciences kenitra) ;
  • El Harami, Mohamed (University Moulay Ismail, Higher School of Technology) ;
  • Ezzaki, Fatima (University Sidi Mohamed Ben Abdellah Faculty of Sciences and Technology Laboratory of Modeling and Computing Sciences)
  • 투고 : 2017.07.22
  • 심사 : 2018.03.08
  • 발행 : 2018.07.01

초록

In this paper we study the existence of conditional expectation for closed and convex valued Pettis-integrable random sets without assuming the Radon Nikodym property of the Banach space. New version of multivalued dominated convergence theorem of conditional expectation and multivalued $L{\acute{e}}vy^{\prime}s$ martingale convergence theorem for integrable and Pettis integrable random sets are proved.

키워드

참고문헌

  1. F. Akhiat, C. Castaing, and F. Ezzaki, Some various convergence results for multivalued martingales, in Advances in mathematical economics. Volume 13, 1-33, Adv. Math. Econ., 13, Springer, Tokyo, 2010.
  2. A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Pol. Acad. Sci. Math. 45 (1997), no. 2, 139-150.
  3. A. Amrani, C. Castaing, and M. Valadier, Convergence in Pettis norm under extreme point condition, Vietnam J. Math. 26 (1998), no. 4, 323-335.
  4. I. Assani and H.-A. Klei, Parties decomposables compactes de $L^1_E$, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 16, 533-536.
  5. G. Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15-36. https://doi.org/10.1080/01630568908816288
  6. C. Castaing, F. Ezzaki, and C. Hess, Convergence of conditional expectations for unbounded closed convex random sets, Studia Math. 124 (1997), no. 2, 133-148.
  7. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. Vol. 580, 1977.
  8. R. M. Dudley, Real Analysis and Probability, revised reprint of the 1989 original, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002.
  9. G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia of Mathematics and its Applications, 47, Cambridge University Press, Cambridge, 1992.
  10. K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), no. 4, 329-360. https://doi.org/10.1023/A:1026547222209
  11. M. El Harami and F. Ezzaki, General Pettis conditional expectation and convergence theorems, Int. J. Math. Stat. 11 (2012), no. 1, 91-111.
  12. F. Ezzaki, A general dominated convergence theorem for unbounded random sets, Bull. Pol. Acad. Sci. Math. 44 (1996), no. 3, 353-361.
  13. A. Faik, Contribution a l'analyse des multifonctions et a l'etude de quelques problemes d'evolution, These de doctorat, Montpellier II, 1995.
  14. C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), no. 1, 39-58. https://doi.org/10.2989/16073600609486148
  15. C. Hess, Quelques resultats sur la mesurabilite des multifonctions a valeurs dans un espace metrique separable, in Seminaire d'analyse convexe, Vol. 16, Exp. 1, 43 pp, Univ. Sci. Tech. Languedoc, Montpellier, 1986.
  16. C. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), no. 1, 226-249. https://doi.org/10.1016/0022-247X(90)90275-K
  17. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149-182. https://doi.org/10.1016/0047-259X(77)90037-9
  18. K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397-403.
  19. U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510-585. https://doi.org/10.1016/0001-8708(69)90009-7
  20. K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), no. 2, 151-173. https://doi.org/10.4064/sm-64-2-151-174
  21. J. Neveu, Martingales a temps discret, Masson et Cie, editeurs, Paris, 1972.
  22. N. S. Papageorgiou, Convergence theorems for set-valued conditional expectations, Comment. Math. Univ. Carolin. 34 (1993), no. 1, 97-104.
  23. V. I. Rybakov, Conditional mathematical expectations for functions that are integrable in the sense of Pettis, Mat. Zametki 10 (1971), 565-570.
  24. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp.
  25. Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingales, Trans. Amer. Math. Soc. 341 (1994), no. 2, 807-827. https://doi.org/10.1090/S0002-9947-1994-1154544-X
  26. H. Ziat, Convergence des suites adaptees multivoques application a la loi forte des grands nombres multivoque, These de doctorat, Montpellier II, 1993.