DOI QR코드

DOI QR Code

A Study of Hypocentral Depth of Pohang Earthquake

포항 지진의 진원 깊이 연구

  • Chung, Tae Woong (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Lee, Youngmin (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Iqbal, Muhammad Zafar (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jeong, Jina (School of Earth System Sciences, College of Natural Science, Kyungpook National University)
  • Received : 2018.03.06
  • Accepted : 2018.05.08
  • Published : 2018.05.31

Abstract

2017 Pohang earthquake (M 5.4) was more disastrous than 2016 Gyeongju earthquake (M 5.8), partly because of its shallow focal depth. However, precise focal depth of Pohang earthquake is still controversial. Close crustal model showed 6 ~ 11.5 km in relocation depth, whereas other models showed almost surface range. Geothermal study indicated temperature of $300^{\circ}C$ at depth of 7.5 km. Related with observations of seismogenic layer, the focal depth of Pohang earthquake seems to be 7 km depth as obtained by close model.

2017년 11월 15일 포항지진(규모 5.4)은 깊이효과로 경주지진(규모 5.8) 보다 피해가 더 컸으나, 정확한 깊이가 확증되지 않고 있다. 진원 깊이를 진원재결정을 통하여 역산한 결과, 대부분의 모델의 진원 깊이가 얕은 표층으로 도출된 반면, 지각구조가 가장 근접한 모델은 6.0 ~ 11.5 km 구간의 깊이로 산출되었다. 지온분석에서는 7.5 km 근방에서 $300^{\circ}C$의 온도가 관찰되어 지진유발층의 사례에 입각한 포항지진의 진원은 근접한 모델로 얻어진 7 km 근방인 것으로 추정되어진다.

Keywords

References

  1. Ahn, H.-S., Park, J.-Y., Kim, J.-M., and Kim, J.-C., 2015, Three-dimensional geologic modeling of the Pohang Basin distributed in Haedo-Dong, Pohang-Si, J. Geol. Soc. Korea, 51, 21-36 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.1.21
  2. Asep, N. R., and Chung, T. W., 2016, Depth dependent crustal scattering attenuation revealed by using single or few events in South Korea, Bull. Seismol. Soc. Amer., 106, 1499-1508. https://doi.org/10.1785/0120150351
  3. Asep, N. R., Chung, T. W., Yoshimoto, K., and Son, B., 2015, Separation of intrinsic and scattering attenuation using single event source in South Korea. Bull. Seismol. Soc. Amer., 105, 858-872. https://doi.org/10.1785/0120140259
  4. Bonner, J. L., Blackwell, D. D., and Herrin, E. T., 2003, Thermal constraints on earthquake depths in California, Bull. Seismol. Soc. Amer., 93, 2333-2354. https://doi.org/10.1785/0120030041
  5. Chang, S.-J., and Baag, C.-E., 2006, Crustal structure in southern Korea from joint analysis of regional broadband waveforms and travel times, Bull. Seismol. Soc. Amer., 96, 856-870. https://doi.org/10.1785/0120040165
  6. Cho, H.-M., Baag, C.-E., Lee, J. M., Moon, W. M., Jung, H., Kim, K. Y., and Asudeh, I., 2006, Crustal velocity structure across the southern Korean Peninsula from seismic refraction survey, Geophys. Res. Lett., 33, L06307.
  7. Cho, H.-M., Baag, C.-E., Lee, J. M., Moon, W. M., Jung, H., and Kim, K. Y., 2013, P and S-wave velocity model along crustal scale refraction and wide-angle reflection profile in the southern Korean peninsula, Tectonophysics, 582, 84-100. https://doi.org/10.1016/j.tecto.2012.09.025
  8. Chung, T. W., and Asep, N. R., 2014, Multiple lapse time window analysis of the Korean Peninsula with considering focal depth, Geophys. and Geophys. Explor., 16, 293-299 (in Korean with English abstract).
  9. Chung, T. W., and Iqbal, M. Z., 2017, Hypocentral depth determination of Gyeongju earthquake aftershock sequence, Geophys. and Geophys. Explor., 20, 1-7 (in Korean with English abstract). https://doi.org/10.7582/GGE.2017.20.1.001
  10. Hirth, G., and Tullis, J., 1994, The brittle-plastic transition in experimentally deformed quartz aggregates, J. Geophys. Res., 99, 11731-11747. https://doi.org/10.1029/93JB02873
  11. Jackson, J. A., and White, N. J., 1989, Normal faulting in the upper continental crust: observations from regions of active extension, J. Struct. Geol., 11, 15-32. https://doi.org/10.1016/0191-8141(89)90033-3
  12. Kim, H. J., and Lee, Y., 2007, Heat flow in the Republic of Korea, J. Geophys. Res., 112, B05413.
  13. Kim, S., Rhie, J., and Kim, G., 2011, Forward waveform modelling procedure for 1-D crustal velocity structure and its application to the southern Korean Peninsula, Geophys. J. Int., 185, 453-468. https://doi.org/10.1111/j.1365-246X.2011.04949.x
  14. Lee, W. H. K., and Lahr, J. C., 1975, HYPO71 (Revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U. S. Geological Survey Open File Report, 75-311, 1-113.
  15. Liernert, B. R., Berg, E., and Frazer, L. N., 1986, HYPOCENTER: An earthquake location method using centered, scaled, and adaptively least squares, Bull. Seismol. Soc. Amer., 76, 771-783.
  16. Mori, J., and Abercrombie, R. E., 1997, Depth dependence of earthqake frequency-magnitude distributions in California: Implication for rupture initiation, J. Geophys. Res., 102, 15081-15090. https://doi.org/10.1029/97JB01356
  17. Pace, B., Peruzza, L., Lavecchia, G., and Boncio, P., 2006, Layered Seismogenic Source Model and Probabilistic Seismic-Hazard, Bull. Seismol. Soc. Amer., 96, 107-132. https://doi.org/10.1785/0120040231
  18. Saikia, U., Rai, S. S., Subrahmanyam, M., Dutta, S., Bose, S., Borah, K., and Meena, R., 2014, Accurate location and focal mechanism of small earthquakes near Idukki Reservoir, Kerala: implication for earthquake genesis, Current Science, 107, 1885-1891.
  19. Scholz, C. H., 1988, The brittle-plastic transition and the depth of seismic faulting, Geol. Rundsch., 77, 319-328. https://doi.org/10.1007/BF01848693
  20. Sibson, R. H., 1983, Continental fault structure and the shallow earthquake source, J. Geol. Soc. London, 140, 741-767. https://doi.org/10.1144/gsjgs.140.5.0741
  21. Wadati, K., 1933, On the travel time of earthquake waves (part II), Geophysical Magazine, 7, 101-111.