References
- A. Andargie, Y.N. Reddy, An asymptotic-Fitted method for solving singularly perturbed delay differential equation, J. of App. math. 3 (2012), 895-902. https://doi.org/10.4236/am.2012.38132
- S. Cengizci, An asymptotic-numerical hybrid method for solving singularly perturbed linear delay differential equations, Int. Jou. of DEs. 20 (2017), Article ID 7269450, 8 pages.
- M.W. Derstine, H.M. Gibbs, F.A. Hopf, D.L. Kaplan, Bifurcation gap in a hybrid optical system, Phys. Rev. A 26 (1982), 3720-3722. https://doi.org/10.1103/PhysRevA.26.3720
- E.P. Doolan, J.J.H. Miller, W.H.A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
- G. File, Y.N. Reddy, A non-asymptotic method for solving singularly perturbed delay differential equations, J. of App. Maths. And Info. 32 (2014), 39-53.
- G. File, Y.N. Reddy, computational method for solving singularly perturbed delay differential equations wit negative shift, Int. J. of App. sci. and engine. 11 (2013), 101-103.
- G. File, Y.N. Reddy, Numerical integration of a class of singularly perturbed delay differential equations with small shift, Int. J. of DEs. 2012, Article ID 572723, 12 pages.
- G. File, Y.N. Reddy, Terminal boundary-value technique for solving singularly perturbed delay differential equations, J. of Taibah Univ. for sci. 8 (2014), 289-300. https://doi.org/10.1016/j.jtusci.2014.01.006
-
V.Y. Glizer, Asymptotic analysis and solution of a finite-horizon
$H_{\infty}$ control problem for singularly-perturbed linear systems with small state delay, J. Optim. Theory Appl. 117 (2003), 295-325. https://doi.org/10.1023/A:1023631706975 - D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1989), 41-73. https://doi.org/10.1103/RevModPhys.61.41
- M.K. Kadalbajoo, D. Kumar, A computational method for singularly perturbed nonlinear differential-difference equations with small shift, J. Appl. Math. Modl. 34 (2010), 2584-2596. https://doi.org/10.1016/j.apm.2009.11.021
-
M.K. Kadalbajoo , K.C. Patidal, K.K. Sharma,
${\varepsilon}$ -uniform convergent fitted method for the numerical solution of the problems arising from singularly perturbed general DDEs, App. Math. and Comp. 182 (2006), 119-139. https://doi.org/10.1016/j.amc.2006.03.043 - M.K. Kadalbajoo and K.K. Sharma, A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations, App. Math. and Comp. 197 (2008), 692-707. https://doi.org/10.1016/j.amc.2007.08.089
- A. Kanshik, V. Kumar, and A.K. Vashishth, An efficient mixed asymptotic-numerical scheme for singularly perturbed convection diffusion problems, App. Math. and Comp. 218 (2012), 8645-8658. https://doi.org/10.1016/j.amc.2012.02.026
- C.G. Lange and R.M. Miura, singular perturbation analysis of boundary value problems for differential difference equations, SIAM J. on App. math. 45 (1985), 680-707.
- C.G. Lange and R.M. Miura, singular perturbation analysis of boundary value problems for differential difference equations, V. small shift with layer behavior, SIAM J. on App. math. 54(1994), 249-272. https://doi.org/10.1137/S0036139992228120
- X. Liao, Hopf and resonant co-dimension two bifurcations in vander Pol equation with two time delays, Chaos Soliton Fract. 23 (2005), 857-871. https://doi.org/10.1016/j.chaos.2004.05.048
- A. Longtin, J. Milton, Complex oscillations in the human pupil light reflex with mixed and delayed feedback, Math. Biosci. 90 (1988), 183-199. https://doi.org/10.1016/0025-5564(88)90064-8
- M.C. Mackey, L. Glass, Oscillations and chaos in physiological control systems, Science 197 (1977), 287-289. https://doi.org/10.1126/science.267326
- A.H. Nayfe , Introduction to perturbation methods, Wiley, New York, 1981.
- D.Y. Tzou, Macro-to-micro scale heat transfer, Taylor and Francis, Washington, DC, 1997.
- M. Wazewska-Czyzewska, A. Lasota, Mathematical models of the red cell system, Mat. Stos. 6 (1976), 25-40.
- E.R. El-Zahar, and Sabel M.M. El-Leabeir, A new method for solving singularly perturbed boundary value problems, App. Math. Inf. Sci. 7(2013), No. 3, pp. 927-938. https://doi.org/10.12785/amis/070310