참고문헌
- Yugal kumar & G. Sahoo, (2012). Analysis of Parametric & Non Parametric Classifiers for Classification Technique using WEKA, IJITCS, 4(7), 43-49. DOI: 10.5815/ijitcs.2012.07.06
- DUTTON, D. & CONROY, G. (1997). A review of machine learning. The Knowledge Engineering Review,12(4), 341-367. DOI: 10.1017/S026988899700101X
- De Mantaras & Armengol E. (1998). Machine learning from example: Inductive and Lazy methods, Data & Knowledge Engineering, 25, 99-123. DOd: 10.1016/S0169-023X(97)00053-0
- Jing, L. & Bin, W. (2016, December). Network Intrusion Detection Method Based on Relevance Deep Learning. In Intelligent Transportation, Big Data & Smart City (ICITBS), 2016 International Conference on (pp. 237-240). IEEE. DOI: 10.1109/icitbs.2016.132
- Rani, N. & Purwar, R. K. (2017). Performance Analysis of various classifiers using Benchmark Datasets in Weka tools. International Journal of Engineering Trends and Technology (IJETT), 47(5), May. DOI: 10.14445/22315381/IJETT-V47P247
- Garg, T. & Khurana, S. S. (2014, May). Comparison of classification techniques for intrusion detection dataset using WEKA. In Recent Advances and Innovations in Engineering (ICRAIE), pp. 1-5. IEEE. DOI: 10.1109/ICRAIE.2014.6909184
- Ouyang, Z., Zhou, M., Wang, T. & Wu, Q. (2009, November). Mining concept-drifting and noisy data streams using ensemble classifiers. In Artificial Intelligence and Computational Intelligence. AICI'09. International Conference on (Vol. 4, pp. 360-364). IEEE. DOI: 10.1109/AICI.2009.153
- Ertam, F., & Yaman, O. (2017, September). Intrusion detection in computer networks via machine learning algorithms. In Artificial Intelligence and Data Processing Symposium (IDAP), 2017 International (pp. 1-4). IEEE. DOI: 10.1109/IDAP.2017.8090165
- Kabir, M. R., Onik, A. R., & Samad, T. (2017). A Network Intrusion Detection Framework based on Bayesian Network using Wrapper Approach. International Journal of Computer Applications, 166(4). DOI: 10.5120/ijca2017913992
- Garg, T., & Khurana, S. S. (2014, May). Comparison of classification techniques for intrusion detection dataset using WEKA. In Recent Advances and Innovations in Engineering (ICRAIE), 2014 (pp. 1-5). IEEE. DOI: 10.1109/ICRAIE.2014.6909184
- Modi, M. U., & Jain, A. (2015). A survey of IDS classification using KDD CUP 99 dataset in WEKA. Int. J. Sci. Eng. Res, 6(11), 947-954.
- Zeng, Z. Q., Yu, H. B., Xu, H. R., Xie, Y. Q., & Gao, J. (2008, November). Fast training support vector machines using parallel sequential minimal optimization. In Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on (Vol. 1, pp. 997-1001). IEEE DOI: 10.1109/iske.2008.4731075
- S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation, 13(3), 637-649. DOI: 10.1162/089976601300014493
- Trevor Hastie, Robert Tibshirani. (1998). Classification by Pairwise Coupling. In: Advances in Neural Information Processing Systems. DOI: 10.1214/aos/1028144844
- Srivastava, S. (2014). Weka: a tool for data preprocessing, classification, ensemble, clustering and association rule mining. International Journal of Computer Applications, 88(10). DOI: 10.5120/15389-3809
- E. M. Yang, H. J. Lee & C. H. Seo. (2017). Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network. Journal of Digital Convergence, 15(6), 391-398. DOI: 10.14400/JDC.2017.15.6.391
- http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- https://www.cs.waikato.ac.nz/-ml/weka/