DOI QR코드

DOI QR Code

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Rostami, Pooya (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2018.02.01
  • 심사 : 2018.02.19
  • 발행 : 2018.05.25

초록

The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

키워드

참고문헌

  1. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  2. Alibeigloo, A. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity", Compos. Struct., 95, 612-622. https://doi.org/10.1016/j.compstruct.2012.08.018
  3. Alibeigloo, A. and Liew, K.M. (2015), "Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method", Int. J. Appl. Mech., 7(1), 1550002. https://doi.org/10.1142/S1758825115400025
  4. Alizada, A.N. and Sofiyev, A.H. (2011), "Modified young's moduli of nano-materials taking into account the scale effects and vacancies", Meccan., 46(5), 915-920. https://doi.org/10.1007/s11012-010-9349-1
  5. Alizada, A.N. and Sofiyev, A.H. (2011), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plast. Compos., 30(18), 1583-1595. https://doi.org/10.1177/0731684411428382
  6. Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta Mech., 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
  7. Aragh, B.S., Barati, A.N. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B: Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
  8. Arani, A.G., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2016), "Wave propagation in FG-CNT-reinforced piezoelectric composite micro plates using viscoelastic quasi-3D sinusoidal shear deformation theory", Compos. Part B: Eng., 95, 209-224. https://doi.org/10.1016/j.compositesb.2016.03.077
  9. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  10. Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2
  11. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
  12. Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  13. Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vibr. Contr., 1077546316646239.
  14. Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  15. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  16. Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  17. Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  18. Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  19. Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct.
  20. Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 1-16.
  21. Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16001-3
  22. Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11.
  23. Ebrahimi, F. and Barati, M.R. (2016o), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  24. Ebrahimi, F. and Barati, M.R. (2016p), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 1-22.
  25. Ebrahimi, F. and Barati, M.R. (2016q), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., Just Accepted.
  26. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  27. Ebrahimi, F. and Habibi, S. (2017), "Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 1-14.
  28. Ebrahimi, F. and Karimiasl, M. (2017), "Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams", Mech. Adv. Mater. Struct., 1-10.
  29. Ebrahimi, F. and Salari, E. (2015c), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  30. Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronaut., 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  31. Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  32. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  33. Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  34. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  35. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015a), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  36. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and nonlinear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  37. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  38. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
  39. Ghorbanpour Arani, A. and Zamani, M.H. (2017), "Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica aerogel foundation", J. Sandw. Struct. Mater., 1099636217721405.
  40. Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2017), "Analytical modeling of wave propagation in viscoelastic functionally graded carbon nanotubes reinforced piezoelectric microplate under electro-magnetic field", J. Nanomater. Nanoeng. Nanosyst., 231(1), 17-33.
  41. Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  42. Janghorban, M. and Nami, M.R. (2017), "Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory", Mech. Adv. Mater. Struct., 24(6), 458-468. https://doi.org/10.1080/15376494.2016.1142028
  43. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
  44. Nejati, M., Eslampanah, A. and Najafizadeh, M. (2016), "Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load", Int. J. Appl. Mech., 8(1), 1650008. https://doi.org/10.1142/S1758825116500083
  45. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  46. Reissner, E. (1985), "Reflections on the theory of elastic plates", Appl. Mech. Rev., 38(11), 1453-1464. https://doi.org/10.1115/1.3143699
  47. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
  48. Shen, H.S., He, X.Q. and Yang, D.Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Lin. Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010
  49. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  50. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650
  51. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  52. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  53. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(7), 1540011. https://doi.org/10.1142/S0219455415400118
  54. Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93(11), 2992-3001. https://doi.org/10.1016/j.compstruct.2011.05.003
  55. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vess. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  56. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035

피인용 문헌

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157