DOI QR코드

DOI QR Code

The Effect of Message Completeness and Leakage Cues on the Credibility of Mobile Promotion Messages

기업의 스마트폰 메시지에 대한 고객 신뢰도에 관한 연구: 메시지 정교화 모델을 중심으로

  • Received : 2018.01.16
  • Accepted : 2018.03.15
  • Published : 2018.03.31

Abstract

Individuals often receive smishing campaigns (mobile phishing messages), which they treat as spam. Thus, firms should understand how their customers distinguish their promotion messages from smishing. However, only a few studies examined this important issue. The present study employs the elaboration likelihood model to develop research hypotheses on the relationship between message cue and message credibility. The message cue in this study is classified as content cue, which is found in the content of promotion messages, and as leakage cue, which is found in peripheral information in the message. Leakage cue includes orthography (inclusion of special characters)and an abbreviated link sent by a faithless sender. We also propose that contextualization has a moderating effect on the relationship between content cue and credibility. We conducted a survey experiment to examine the effect of message cues on message credibility in the context of respondents receiving discount coupons through mobile messages. The result of data analysis based on 166 responses suggests that leakage cue had a negative effect on message credibility. A message with defective content cue has a marginally negative effect on message credibility. In particular, defective content cue in a high-contextual message has a strong negative impact on message credibility. This effect was not observed in low-contextual messages. Moreover, message credibility is significantly low regardless of the degree of contextualization if there is a leakage cue in the message. Our findings suggest that mobile promotion messages should be customized for message receivers and should have no leakage cues.

지금까지 스마트폰 문자 메시지와 관련한 연구는 보안 및 프라이버시 우려 측면에서 제한적으로 이루어져 왔다. 그러나 기업들이 소비자를 대상으로 프로모션 메시지를 전달할 때 어떤 메시지가 효과적인지 규명하는 시도는 많지 않았다. 본 연구는 스마트폰의 메시지 신뢰도를 저하하는 신호를 정교화 가능성 모델에 적용하여 분석하였다. 메시지의 신호는 내용 상의 신호와 수신자가 세심한 검토 없이 의사결정을 하도록 하는 누설 신호(맞춤법 및 특수문자, 축약 링크, 신뢰할 수 없는 발신자 등)로 나눌 수 있다. 이 중 내용 상의 신호에 조절효과를 주는 요소는 맥락화로 메시지가 자신과 상관있다고 느끼는 정도(관여도)이다. 메시지의 신호가 스마트폰 사용자의 메시지 신뢰도에 주는 영향을 검증하기 위해 모바일에서 쿠폰발행 메시지를 받는 시나리오를 바탕으로 166명 대상의 서베이 실험을 진행하였다. 분석 결과, 누설 신호는 유의한 수준으로 신뢰도에 부정적 영향을 주었고, 내용 상의 결함은 근소한 수준에서 부정적 영향을 주었다. 주목할 점은 고맥락화 메시지에 내용 상의 결함이 있으면 유의한 수준으로 신뢰도에 부정적 영향을 주었으나, 저맥락화된 메시지의 경우에는 신뢰도에 영향을 주지 않았으며, 메시지에 누설 신호가 있으면 맥락화 정도와 상관없이 신뢰도가 저하되었다는 것이다. 이는 기업들이 모바일을 통한 프로모션을 진행할 때 관여도가 높은 상품을 골라 고객 맞춤형으로 문자 메시지를 작성하고, 메시지에는 내용 상의 결함이 없도록 하는 것이 중요하다는 시사점을 제공한다.

Keywords

References

  1. 남기화, 여정성, "모바일 광고의 단계별 수용과정에 관한 연구", 소비자학연구, 제22권, 제4호, 2011, pp. 1-28. 
  2. 박세정, "세계 스마트폰 보급률 70% 육박...세계1위 한국은 몇%?", 디지털타임스, 2016.7. 2, Available at http://www.dt.co.kr/contents.html?article_no=2016070102100151780001. 
  3. 이중배, "2015 라이프 스타일과 소비 성향: 10대부터 50대까지", 슬로우뉴스, 2015.9.3, Available at http://slownews.kr/45332. 
  4. 정기석, "국내 모바일 간편결제 활성화 방안에 관한 연구", 융합보안논문지, 제15권, 제4호, 2013, pp. 79-88. 
  5. 정용준, 김예진, "상관분석 및 의사결정나무분석을 통한 하수처리시설의 에너지 소비량과 운영인자의 관계 분석", Journal of Korean Society on Water Environment, 제32권, 제3호, 2016, pp. 253-260.  https://doi.org/10.15681/KSWE.2016.32.3.253
  6. 최양서, 서동일, "사회공학적 공격방법을 통한 개인정보 유출기술 및 대응방안 분석", 정보보호학회지, 제16권, 제1호, 2006, pp. 40-48. 
  7. 허경옥, "소비자의 구매의사결정 행동유형이 TV 광고에 대한 소비자신뢰도 및 수용도에 미치는 영향", 소비자문제연구, 제26권, 제2호, 2015, pp. 1-22. 
  8. 홍종선, "'토종 1호' 소셜커머스 창업 신현성 티몬 이사회 의장 "알면 알수록 도전하는 게 힘들다, 나도 두렵다", 주간동아, 2017.8.2, Available at http://weekly.donga.com/3/all/11/1012634/1. 
  9. Abu-Nimeh, S., D. Nappa, X. Wang, and S. Nair, "A comparison of machine learning techniques for phishing detection", In Proceedings of the Anti-Phishing Working Groups 2nd Annual eCrime Researchers Summit, 2007, pp. 60-69. 
  10. Bamba, F. and S. J. Barnes, "SMS advertising, permission and the consumer: A study", Business Process Management Journal, Vol.13, 2007, pp. 815-829.  https://doi.org/10.1108/14637150710834578
  11. Castaneda, J. A. and F. J. Montoro, "The effect of Internet general privacy concern on customer behavior", Electronic Commerce Research, Vol.7, No.2, 2007, pp. 117-141.  https://doi.org/10.1007/s10660-007-9000-y
  12. Cheung, C. M. Y., C. L. Sia, and K. K. Kuan, "Is this review believable? A study of factors affecting the credibility of online consumer reviews from an ELM perspective", Journal of the Association for Information Systems, Vol.13, 2012, pp. 618-635.  https://doi.org/10.17705/1jais.00305
  13. Chutijirawong, N. and P. Kanawattanachai, "The role and impact of context-driven personalisation technology on customer acceptance of advertising via short message service (SMS)", International Journal of Mobile Communications, Vol.12, No.6, 2014, pp. 578-602.  https://doi.org/10.1504/IJMC.2014.064914
  14. Cialdini, R. B., Influence: Science and Practice, Pearson Education, Boston, 2009. 
  15. Dharmadasa, P. and T. Alahakoon, "An empirical study of factors influencing consumer attitudes towards SMS advertising", International Journal of Online Marketing (IJOM), Vol.4, No.3, 2014, pp. 1-13.  https://doi.org/10.4018/ijom.2014070101
  16. Dinev, T., A. R. McConnell, and H. Jeff Smith, "Research commentary-informing privacy research through information systems, psychology, and behavioral economics: Thinking outside the "APCO" Box", Information Systems Research, Vol.26 No.4, 2015, pp. 639-655.  https://doi.org/10.1287/isre.2015.0600
  17. Drossos, D., G. M. Giaglis, G. Lekakos, F. Kokkinaki, and M. G. Stavraki, "Determinants of effective SMS advertising: An experimental study", Journal of Interactive Advertising, Vol.7, No.2, 2007, pp. 16-27.  https://doi.org/10.1080/15252019.2007.10722128
  18. Drossos, D., G. M. Glaglis, G. Lekakos, F. Kokkinaki, and M. G. Stavraki, "Determinants of effective SMS advertising: An experimental study", Journal of Interactive Advertising, Vol.7, No.2, 2007, pp. 16-27.  https://doi.org/10.1080/15252019.2007.10722128
  19. Dutta-Bergman, M. J., "The impact of completeness and Web use motivation on the credibility of e-health information", Journal of Communication, Vol.54, No.2, 2004, pp. 253-269.  https://doi.org/10.1111/j.1460-2466.2004.tb02627.x
  20. Eveland, W. P., D. V. Shah, and N. Kwak, "Assessing causality in the cognitive mediation model: A panel study of motivations, information processing, and learning during campaign", Communication Research, Vol.30, 2003, pp. 359-386.  https://doi.org/10.1177/0093650203253369
  21. EY.com, "Creating trust in the digital world", EY's Global Information Security Survey 2015, 2015. 
  22. Goel, S., K. Williams, and E. Dincelli, "Got phished? Internet security and human vulnerability", Journal of the Association for Information Systems, Vol.1, No.1, 2017, pp. 22-44.  https://doi.org/10.17705/1jais.00447
  23. Harrison, B., E. Svetieva, and A. Vishwanath, "Individual processing of phishing emails How attention and elaboration protect against phishing", Online Information Review, Vol.40, No.2, 2016, pp. 265-281.  https://doi.org/10.1108/OIR-04-2015-0106
  24. Jagatic, T., N. Johnson, M. Jakobsson, and F. Menczer, Social Phishing, School of Informatics and Department of Computer Science, Indiana University, 2006, Available at http://www.indiana.edu/~phishing/social-network-experience/phishing-preprint.pdf. 
  25. Jakobsson, M. and J. Ratkiewicz, "Designing ethical phishing experiments: A study of (ROT13) rOnl query features", In Proceedings of the 15th International Conference on World Wide Web, 2006, pp. 513-522. 
  26. Jakobsson, M., A. Tsow, A. Shah, E. Blevis, and Y. K. Lim, "What instills trust? A qualitative study of phishing", In Proceedings of the 11th International Conference on Financial Cryptography, 2007, pp. 356-361. 
  27. Jakobsson, M., The human factor in phishing, Privacy and Security of Consumer Information, Indiana University, Bloomington, IN, 2007. 
  28. Johnson, P. E., S. Grazioli, K. Jamal, and I .A. Zualkernan, "Success and failure in expert reasoning", Organizational Behavior and Human Decision Processes, Vol.53, 1992, pp. 173-203.  https://doi.org/10.1016/0749-5978(92)90061-B
  29. Mathieson, K., "Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior", Information Systems Research, Vol.2, 1991, pp. 173-191.  https://doi.org/10.1287/isre.2.3.173
  30. Mitnick, K. and W. L. Simon, The Art of Deception: Controlling the Human Element of Security, New York, John Wiley & Sons, 2011. 
  31. Nov, O. and C. Ye, "Users' personality and perceived ease of use of digital libraries: The case for resistance to change", Journal of the American Society for Information Science and Technology, Vol.53, 2008, pp. 845-851.  https://doi.org/10.1002/asi.20800
  32. Perse, E. M., "Audience selectivity and involvement in the newer media environment", Communication Research, Vol.17, 1990, pp. 675-697.  https://doi.org/10.1177/009365090017005005
  33. Petty, R. E. and D. T. Wegener Attitude Change: Multiple Roles for Persuasion Variables, New York, McGraw-Hill, 1998. 
  34. Petty, R. E. and J. T. Cacioppo, Attitudes and Persuasion: Classic and Contemporary Approaches, William C. Brown, Dubuque, IA, 1981. 
  35. Sutanto, J., E. Palme, C. H. Tan, and C. W. Phang, "Addressing the personalization-privacy paradox: An empirical assessment from a field experiment on smartphone users", Mis Quarterly, Vol.37, No.4, 2013, pp. 1141-1164.  https://doi.org/10.25300/MISQ/2013/37.4.07
  36. Vishwanath, A., T. Herath, R. Chen, J. Wang, and H. R. Rao, "Why do people get phished? Testing individual differences in phishing vulnerability within an integrated, information processing model", Decision Support Systems, Vol.51, 2011, pp. 576-586.  https://doi.org/10.1016/j.dss.2011.03.002
  37. Wang, C., P. Zhang, R. Choi, and M. DiEredita, "Understanding consumers attitude toward advertising", Eighth Americas Conference on Information Systems, 2002, Available at http://www.sighci.org/amcis02/RIP/Dishaw.pdf. 
  38. Wirtz, J., M. O. Lwin, and J. D. Williams, "Causes and consequences of consumer online privacy concern", International Journal of Service Industry Management, Vol.18, No.4, 2007, pp. 326-348.  https://doi.org/10.1108/09564230710778128
  39. Zaichkowsky, J. L., "Measuring the involvement construct", The Journal of Consumer Research, Vol.12, 1985, pp. 341-352.  https://doi.org/10.1086/208520
  40. Zhou, T., "The impact of privacy concern on user adoption of location-based services", Industrial Management and Data Systems, Vol.111, No.2, 2011, pp. 212-226. https://doi.org/10.1108/02635571111115146