DOI QR코드

DOI QR Code

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima (Department of Mining Engineering, Hamedan University of Technology) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
  • Received : 2016.08.21
  • Accepted : 2017.11.20
  • Published : 2018.05.20

Abstract

The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

Keywords

References

  1. Agliardi, F., Crosta, G.B., Meloni, F., Valle, C. and Rivolta, C. (2013), "Structurally-controlled instability, damage and slope failure in a porphyry rock mass", Tectonophys., 605, 34-47. https://doi.org/10.1016/j.tecto.2013.05.033
  2. Amuzesh, M., Karimi Nasab, S., Atashpanjeh, A. and Babaie, B. (2004), "Stability analysis of the Sarcheshmeh pseudowedge failure based on the Hoek and Brown criteria", Proceedings of the 2nd Iranian Rock Mechanics Conference, Tehran, Iran, December.
  3. Babanouri, N. and Dehghani, H. (2017), "Investigating a potential reservoir landslide and suggesting its treatment using limit-equilibrium and numerical methods", J. Mountain Sci., 14(3), 432-441. https://doi.org/10.1007/s11629-016-3898-2
  4. Babanouri, N., Mansouri, H., Nasab, S.K. and Bahaadini, M. (2013), "A coupled method to study blast wave propagation in fractured rock masses and estimate unknown properties", Comput. Geotech., 49, 134-142. https://doi.org/10.1016/j.compgeo.2012.11.008
  5. Blake, W. (1968), "Finite element model study of slope modification at the Kimbley pit", Soc. Min. Eng. AIME, 241, 525-532.
  6. Bonilla-Sierra, V., Scholtes, L., Donze, F. and Elmouttie, M. (2015), "DEM analysis of rock bridges and the contribution to rock slope stability in the case of translational sliding failures", J. Rock Mech. Min. Sci., 80, 67-78.
  7. Corkum, A.G. and Martin, C.D. (2004), "Analysis of a rock slide stabilized with a toe-berm: A case study in British Columbia, Canada", J. Rock Mech. Min. Sci., 41(7), 1109-1121.
  8. Cundall, P.A. (1988), "Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 25(3), 107-116.
  9. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  10. Cundall, P.A. and Strack, O.D.L. (1999), Particle Flow Code in 2 Dimensions, Itasca Consulting Group Inc.
  11. Dawson, E.M., Roth, W.H. and Drescher, A. (1999), "Slope stability analysis by strength reduction", Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  12. Eberhardt, E., Stead, D. and Coggan, J.S. (2004), "Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide", J. Rock Mech. Min. Sci., 41(1), 69-87. https://doi.org/10.1016/S1365-1609(03)00076-5
  13. Faramarzi, L., Zare, M., Azhari, A. and Tabaei, M. (2016), "Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the limit equilibrium method and numerical modeling", Bull. Eng. Geol. Environ., 76(2), 783-794.
  14. Fereidooni, D. (2017), "Influence of discontinuities and clay minerals in their filling materials on the instability of rock slopes", Geomech. Geoeng., 13(1), 11-21.
  15. Gao, Y., Wu, D., Zhang, F., Lei, G.H., Qin, H. and Qiu, Y. (2016), "Limit analysis of 3D rock slope stability with non-linear failure criterion", Geomech. Eng., 10(1), 59-76. https://doi.org/10.12989/gae.2016.10.1.059
  16. Garcia Lopez-Davalillo, J.C., Monod, B., Alvarez-Fernandez, M.I., Herrera Garcia, G., Darrozes, J., Gonzalez-Nicieza, C. and Olivier, M. (2014), "Morphology and causes of landslides in Portalet area (Spanish Pyrenees): Probabilistic analysis by means of numerical modelling", Eng. Fail. Anal., 36, 390-406. https://doi.org/10.1016/j.engfailanal.2013.10.015
  17. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  18. Goodman, R.E., Heuze, F.E. and Ohnishi, Y. (1972), "Research on strength, deformability, water pressure relationship for fault in direct shear", University of California, Berkeley, Berkeley, California, U.S.A.
  19. Hart, R., Cundall, P.A. and Lemos, J. (1988), "Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 117-125.
  20. Huang, D., Cen, D., Ma, G. and Huang, R. (2015), "Step-path failure of rock slopes with intermittent joints", Landslides, 12(5), 911-926. https://doi.org/10.1007/s10346-014-0517-6
  21. Indraratna, B., Premadasa, W., Brown, E.T., Gens, A. and Heitor, A. (2014), "Shear strength of rock joints influenced by compacted infill", J. Rock Mech. Min. Sci., 70, 296-307.
  22. ISRM. (1978), "Suggested methods for determining tensile strength of rock materials", J. Rock Mech. Min. Sci. Geomech. Abstr., 15(3), 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
  23. Itasca Consulting Group Inc. (1999a), 3DEC User's Guide, Minneapolis, Minnesota, U.S.A.
  24. Itasca Consulting Group Inc. (1999b), Particle Flow Code in 2 Dimensions (PFC2D) Version 3.10 User's Manual, Minneapolis, Minnesota, U.S.A.
  25. Jiang, Q., Qi, Z., Wei, W. and Zhou, C. (2015), "Stability assessment of a high rock slope by strength reduction finite element method", Bull. Eng. Geol. Environ., 74(4), 1153-1162. https://doi.org/10.1007/s10064-014-0698-1
  26. Kanungo, D.P., Pain, A. and Sharma, S. (2013), "Finite element modeling approach to assess the stability of debris and rock slopes: A case study from the Indian Himalayas", Nat. Hazards, 69(1), 1-24. https://doi.org/10.1007/s11069-013-0680-4
  27. Karimi Nasab, S. (2001), "Remedial measures for Sarcheshmeh pseudowedge failure", Proceedings of the 1st Iranian Rock Mechanics Conference, Tehran, Iran, January.
  28. Khosravi, A., Serej, A.D., Mousavi, S.M. and Haeri, S.M. (2016), "Effect of hydraulic hysteresis and degree of saturation of infill materials on the behavior of an infilled rock fracture", J. Rock Mech. Min. Sci., 88, 105-114.
  29. Latha, G.M. and Garaga, A. (2010), "Stability analysis of a rock slope in Himalayas", Geomech. Eng., 2(2), 125-140. https://doi.org/10.12989/gae.2010.2.2.125
  30. Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483
  31. Pain, A., Kanungo, D.P. and Sarkar, S. (2014), "Rock slope stability assessment using finite element based modellingexamples from the Indian Himalayas", Geomech. Eng., 9(3), 215-230.
  32. Panahi, M., Afsarinejad, M., Jalalifar, H. and Karimi Nasab, S. (2001), "Discontinuity information processing in slope stability in Sarcheshmeh copper mine", Proceedings of the 1st Conference of Iran Open Pit Mines, Kerman, Iran, October.
  33. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  34. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  35. Scholtes, L. and Donze, F.V. (2015), "A DEM analysis of step-path failure in jointed rock slopes", Comptes Rendus Mecanique, 343(2), 155-165. https://doi.org/10.1016/j.crme.2014.11.002
  36. Shahabpour, J. (1982), "Aspects of alteration and mineralization at the Sar-Cheshmeh copper-molybdenum deposit", Ph.D. Dissertation, University of Leeds, Leeds, West Yorkshire, U.K.
  37. Shamekhi, E. and Tannant, D.D. (2015), "Probabilistic assessment of rock slope stability using response surfaces determined from finite element models of geometric realizations", Comput. Geotech., 69, 70-81. https://doi.org/10.1016/j.compgeo.2015.04.014
  38. Shi, C., Li, D., Chen, K. and Zhou, J. (2016), "Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation", J. Mountain Sci., 13(5), 891-905. https://doi.org/10.1007/s11629-014-3399-0
  39. Sjoberg, J. (1999), "Analysis of large scale rock slopes", Ph.D. Dissertation, Lulea University of Technology, Lulea, Sweden.
  40. Stacey, T.R. (1970), "The stresses surrounding open-pit mine slopes", Plan. Open Pit Mines, 199-207.
  41. Stead, D., Eberhardt, E. and Coggan, J.S. (2006), "Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques", Eng. Geol., 83(1), 217-235. https://doi.org/10.1016/j.enggeo.2005.06.033
  42. Tiwari, G. and Latha, G.M. (2016), "Design of rock slope reinforcement: An Himalayan case study", Rock Mech. Rock Eng., 49(6), 2075-2097. https://doi.org/10.1007/s00603-016-0913-4
  43. Wang, S., Huang, R., Ni, P. and Jeon, S. (2017), "Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis", Geomech. Eng., 12(4), 723-738. https://doi.org/10.12989/gae.2017.12.4.723
  44. Waterman, G.C. and Hamilton, R.L. (1975), "The Sar Cheshmeh porphyry copper deposit", Econ. Geol., 70(3), 568-576. https://doi.org/10.2113/gsecongeo.70.3.568
  45. Wyllie, D.C. and Mah, C. (2004). Rock Slope Engineering: Civil and Mining, CRC Press.
  46. Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004
  47. Zheng, H., Liu, F.D. and Li, G.C. (2007), "On the assessment of failure in slope stability analysis by the finite element method", Rock Mech. Rock Eng., 41(4), 629-639. https://doi.org/10.1007/s00603-007-0129-8