DOI QR코드

DOI QR Code

Systematic studies on the properties of poly(lactic acid) (PLA)/liquid polybutadiene rubber (LPB) reactive blends

  • Lim, Sung-Wook (Korea Institute of Footwear & Leather Technology) ;
  • Choi, Myeon-Cheon (Korea Institute of Footwear & Leather Technology) ;
  • Jeong, Jae-Hoon (Department of Polymer Science and Engineering, Pusan National University) ;
  • Park, Eun-Young (Korea Institute of Footwear & Leather Technology) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2018.11.26
  • 심사 : 2019.03.25
  • 발행 : 2018.06.25

초록

Following our previous work, we have conducted further systematic studies to investigate the effects of reactive blending on the thermal and mechanical properties of blends of poly(lactic acid) (PLA) and a liquid rubber, polybutadiene (LPB). The toughened PLAs were prepared by melt-blending the PLA with various contents (0-9 wt.%) of the LPB in the absence or presence of dicumyl peroxide (DCP), a radical initiator. It was found that the rubber domains were homogeneously dispersed at the nanoscale in the PLA matrix up to 9 wt.% of LPB thanks to the reactive blending in the presence of DCP. Owing to the compatibilization of PLA with LPB through reactive blending, the elongation and toughness of PLA was enhanced, while the hydrolytic degradation of PLA was reduced.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Auras, R., Harte, B., Selke, S. and Hernandez, R. (2003), "Mechanical, physical, and barrier properties of poly(lactide) films", J. Plastic Film Sheeting, 19(2), 123-135. https://doi.org/10.1177/8756087903039702
  2. Chen, B.-K., Shih, C.-C. and Chen, A.F. (2012), "Dutile PLA nanocomposites with improved thermal stability", Compos. Part A: Appl. Sci. Manuf., 43(12), 2289-2295. https://doi.org/10.1016/j.compositesa.2012.08.007
  3. Choi, K.-M., Choi, M.-C., Han, D.-H., Park, T.-S. and Ha C.-S. (2013), "Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending", Eur. Polym. J., 49(8), 2356-2364. https://doi.org/10.1016/j.eurpolymj.2013.05.027
  4. Choi, K.-M., Lim, S.-W., Choi, M.-C., Kim, Y.-M., Han, D.-H. and Ha, C.-S. (2014a), "Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending", Polym. Bull., 71(12), 3305-3321. https://doi.org/10.1007/s00289-014-1251-x
  5. Choi, K.-M., Lim, S.-W., Choi, M.-C., Han, D.-H. and Ha, C.-S. (2014b), "Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol)", Macromol. Res., 22(12), 1312-1319. https://doi.org/10.1007/s13233-014-2182-y
  6. Gao, J., Duan, L., Yang, G., Zhang, Q., Yang, M. and Fu, Q. (2012), "Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization", Appl. Surf. Sci., 261(15), 528-535. https://doi.org/10.1016/j.apsusc.2012.08.050
  7. Garlotta, D. (2001), "A Literature Review of Poly(Lactic Acid)", J. Polym. Environ., 9(2), 63-84. https://doi.org/10.1023/A:1020200822435
  8. Hassouna, F., Raquez, J.-M., Addiego, F., Dubois, P., Toniazzo, V. and Ruch, D. (2011), "New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion", Eur. Polym. J., 47(11), 2134-2144. https://doi.org/10.1016/j.eurpolymj.2011.08.001
  9. Hassouna, F., Raquez, J.-M., Addiego, F., Toniazzo, V., Dubois, P. and Ruch, D. (2012), "New development on plasticized poly(lactide):Chemical grafting of citrate on PLA by reactive extrusion", Eur. Polym. J., 48(2), 404-415. https://doi.org/10.1016/j.eurpolymj.2011.12.001
  10. Ho, C.-H., Wang, C.-H., Lin, C.-I. and Lee, Y.-D. (2008), "Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends", Polymer, 49(18), 3902-3910. https://doi.org/10.1016/j.polymer.2008.06.054
  11. Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner, A. and Baer, E. (2003a), "Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol)", Polymer, 44(19), 5681-5689. https://doi.org/10.1016/S0032-3861(03)00609-8
  12. Hu, Y., Topolkaraev, V., Hiltner, A. and Baer, E. (2003b), "Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity", Polymer, 44(19), 5701-5710. https://doi.org/10.1016/S0032-3861(03)00614-1
  13. Jacobsen, S. and Fritz, H.G. (1999), "Plasticizing polylactide-the effect of different plasticizers on the mechanical properties", Polym. Eng. Sci., 39(7), 1303-1310. https://doi.org/10.1002/pen.11517
  14. Jamshidi, K., Hyon, S.-H. and Ikada, Y. (1988), "Thermal characterization of polylactides", Polymer, 29(12), 2229-2234. https://doi.org/10.1016/0032-3861(88)90116-4
  15. Kulinski, Z., Piorkowska, E., Gadzinowska, K. and Stasiak, M. (2006), "Plasticization of poly(L-lactide) with poly(propylene glycol)", Biomacromolecules, 7(7), 2128-2135. https://doi.org/10.1021/bm060089m
  16. Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A. and McCarthy, S.P. (1997), "Citrate ester as plasticizers for poly(lactic acid)", J. Appl. Polym. Sci., 66(8), 1507-1513. https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
  17. Li, Y. and Shimizu, H. (2009), "Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphology and properties", Eur. Polym. J., 45(3), 738-746. https://doi.org/10.1016/j.eurpolymj.2008.12.010
  18. Lim, L.-T., Auras, R. and Rubino, M. (2008), "Processing technologies for poly(lactic acid)", Prog. Polym. Sci., 33(8), 820-852. https://doi.org/10.1016/j.progpolymsci.2008.05.004
  19. Lim, S.-W., Choi, M.-C., Jeong, J.-H., Park, E.-Y. and Ha, C.-S. (2016), "Toughening poly(lactic acid) (PLA) through in situ reactive blending with liquid polybutadiene rubber (LPB)", Compos. Interf., 23(8), 807-818. https://doi.org/10.1080/09276440.2016.1175168
  20. Lui, H. and Zhang, J. (2011), "Research Progress in Toughening Modification of Poly(lactic acid)", J. Polym. Sci. Polym. Phys., 49(15), 1051-1083.
  21. Liu, H., Song, W., Chen, F., Guo, L. and Zhang, J. (2011), "Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends", Macromolecules, 44(6), 1513-1522. https://doi.org/10.1021/ma1026934
  22. Liu, X., Zhou, T., Liu, Y., Zhang, A., Yuan, C. and Zhang, W. (2015), "Cross-linking process of cispolybutadiene rubber with peroxides studied by two-dimensional infrared correlation spectroscopy: a detailed tracking", RSC Adv., 5(14), 10231-10242. https://doi.org/10.1039/C4RA13502D
  23. Liu, X., Liu, Y., Yuanb, C., Zhang, A., Zhou, T. and Zhang, W. (2015), "Cross-linking process of cispolybutadiene rubber with peroxides studied by two-dimensional infrared correlation spectroscopy: a detailed tracking", RSC Adv., 5(14), 10231-10242. https://doi.org/10.1039/C4RA13502D
  24. Ljungberg, N. and Wesslen, B. (2002), "The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid)", J. Polym. Sci. Polym. Phys., 86(5), 1227-1234.
  25. Ljungberg, N. and Wesslen, B. (2003), "Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging", Polymer, 44(25), 7679-7688. https://doi.org/10.1016/j.polymer.2003.09.055
  26. Ljungberg, N. and Wesslen, B. (2005), "Preparation and properties of plasticized poly(lactic acid) films", Biomacromolecules, 6(3), 1789-1796. https://doi.org/10.1021/bm050098f
  27. Ljungberg, N., Andersson, T. and Wesslen, B. (2003), "Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate", J. Appl. Polym. Sci., 88(14), 3239-3247. https://doi.org/10.1002/app.12106
  28. Luckachan, G.E. and Pillai, C.K.S. (2011), "Biodegradable polymers - a review on recent trends and emerging perspectives", J. Polym. Environ., 19(3), 637-676. https://doi.org/10.1007/s10924-011-0317-1
  29. Lunt, J. (1998), "Large-scale production, properties and commercial applications of polylactic acid polymers", Polym. Deg. Stab., 59(1-3), 145-152. https://doi.org/10.1016/S0141-3910(97)00148-1
  30. Martin, O. and Averous, L. (2001), "Poly(lactic acid): plasticization and properties of biodegradable multiphase systems", Polymer, 42(14), 6209-6219. https://doi.org/10.1016/S0032-3861(01)00086-6
  31. Mehta, R., Kumar, V., Bhunia, H. and Upadhyay, S.N. (2005), "Synthesis of poly(lactic acid): A review", J. Macromol. Sci. Part C, 45(4), 325-349. https://doi.org/10.1080/15321790500304148
  32. Migliaresi, C., Cohn, D., De Lollis, A. and Fambri, L. (1991), "Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments", J. Appl. Polym. Sci., 43(1), 83-95. https://doi.org/10.1002/app.1991.070430109
  33. Okamoto, K., Ichikawa, T., Yokohara, T. and Yamaguchi, M. (2009), "Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends", Eur. Polym. J., 45(8), 2304-2312. https://doi.org/10.1016/j.eurpolymj.2009.05.011
  34. Oyama, H. (2009), "Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer", Polymer, 50(3), 747-751. https://doi.org/10.1016/j.polymer.2008.12.025
  35. Siracusa, V., Rocculi, P., Romani, S. and Rosa, M.D. (2008), "Biodegradable Polymers for Food Packaging: A Review", Trends Food Sci. Tech. 19(12), 634-643.. https://doi.org/10.1016/j.tifs.2008.07.003
  36. Vroman, I. and Tighzert, L. (2009), "Biodegradable Polymers", Materials, 2(2), 307-344. https://doi.org/10.3390/ma2020307
  37. Zhang, J., Tashiro, K., Tsuji, H. and Domb, A.J. (2008), "Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC", Macromolecules, 41(4), 1352-1357. https://doi.org/10.1021/ma0706071
  38. Zhang, W., Chen, L. and Zhang, Y. (2009), "Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer', Polymer, 50(5), 1311-1315. https://doi.org/10.1016/j.polymer.2009.01.032