DOI QR코드

DOI QR Code

Analysis of cutting forces and roughness during hard turning of bearing steel

  • Bouziane, Abderrahim (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Boulanouar, Lakhdar (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Azizi, Mohamed Walid (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Keblouti, Ouahid (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Belhadi, Salim (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University)
  • 투고 : 2017.09.12
  • 심사 : 2018.02.07
  • 발행 : 2018.05.10

초록

An experimental study has been carried out to analyze the effect of cutting parameters (cutting speed, feed and depth of cut) and tool nose radius on the surface roughness and the cutting force components during hard turning of the AISI 52100 (50 HRC) steel with a ceramic cutting tool. The tests have been conducted according to the methodology of planning experiments, based on an orthogonal plan of Taguchi (L27). By using the response surface methodology (RSM), the components of the cutting force and the roughness of the machined surface were modeled and the effects of the input parameters were analyzed statistically by ANOVA and RSM. The results show that the feed (f), the tool nose radius (r), the cutting speed (Vc), the interaction between feed and tool nose radius ($f{\times}r$) as well as that of the quadratic effect ($f^2$) all have significant effects on the surface roughness (Ra). The feed is the most influencing factor with a contribution of 47.31%. The components of the cutting force were strongly influenced by the depth of cut, followed by the advance with a lower degree. By comparing the experimental values with those predicted by the models of the cutting force components and the surface roughness, it appears that they are in very good correlation.

키워드

과제정보

연구 과제 주관 기관 : Badji Mokhtar-Annaba University

참고문헌

  1. Aouici, H., Bouchelaghem, H., Yallese M.A., Elbah, M. and Fnides, B. (2014), "Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology", Int. J. Adv. Manuf. Technol., 73(9-12), 1775-1788. https://doi.org/10.1007/s00170-014-5950-0
  2. Asian, E., Camuscu, N. and Birgoren, B. (2007), "Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with $Al_2O_3$/TiC missed ceramic tool", J. Mater. Des., 28(5), 1618-1622. https://doi.org/10.1016/j.matdes.2006.02.006
  3. Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2012), "Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel", J. Mech. Sci. Technol., 26(12), 4105-4114. https://doi.org/10.1007/s12206-012-0885-6
  4. Bensouilah, H., Aouici, H., Meddour, I., Yallese, M.A., Mabrouki, T. and Girardin, F. (2016), "Performance of coated and uncoated mixed ceramic tools in hard turning process", Measure., 82, 1-18.
  5. Bouacha, K., Yallese, M.A., Khamel, S. and Belhadi, S. (2014), "Analysis and optimization of hard turning operation using cubic boron nitride tool", Int. J. Refr. Met. Har. Mater., 45, 160-178. https://doi.org/10.1016/j.ijrmhm.2014.04.014
  6. Bouacha, K., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2010), "Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool", J. Refract. Met. Hard. Mater., 28(3), 349-361. https://doi.org/10.1016/j.ijrmhm.2009.11.011
  7. Bouzid, L., Yallese, M.A. and Belhadi, S., (2014), "RMS-based optimisation of surface roughness when turning AISI 420 stainless steel", Int. J. Mater. Prod. Technol., 49(4), 224-251. https://doi.org/10.1504/IJMPT.2014.064934
  8. Das, D.K., Panda, A. and Dhupal, D. (2017), "Analysis of surface roughness in hard turning with coated ceramic inserts: Cutting parameters effects, prediction model, cutting conditions optimization and cost analysis" Cien.e Tecn.Vitivin., 32(1) 127-154.
  9. Gunay, M. and Yucel, E. (2013), "Application of Taguchi method for determining optimum surface roughness in turning of highalloy white cast iron", Measure., 46(2), 913-919.
  10. Hessainia, Z., Belbah, A., Yallese, M.A. and Mabrouki, R. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measure., 46(5), 1671-1681.
  11. Hessainia, Z., Kribes, N., Yalles, M.A., Mabrouki, T., Ouelaa, N. and Rigal, J.F. (2013), "Turning roughness model based on tool-nose displacements", Mech., 19(1), 112-119.
  12. Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. https://doi.org/10.12989/sem.2017.61.4.519
  13. Kevin Chou, Y. and Hui, S. (2004), "Tool nose radius effects on finish hard turning", J. Mater. Proc. Technol., 148(2), 259-268. https://doi.org/10.1016/j.jmatprotec.2003.10.029
  14. Kumar, A.S., Durai, A.R. and Sornakumar, T. (2003), "Machinability of hardened steel using alumina based ceramic cutting tools", Int. J. Refract. Met. Hard. Mater., 21(3-4), 109-117. https://doi.org/10.1016/S0263-4368(03)00004-0
  15. Meddour, I., Yallese, M.A., Khattabi, R., Elbah, M. and Boulanouar, L. (2015), "Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: Cutting conditions optimization", Int. J. Adv. Manufact. Technol., 77(5-8), 1387-1399. https://doi.org/10.1007/s00170-014-6559-z
  16. Montgomery, D.C. (2001), Design and Analysis of Experiments, 5th Edition, John Wiley & Sons Inc, New York, U.S.A.
  17. Neseli, S., Yaldiz, S. and Turkes, E. (2011), "Optimization of tool geometry parameters for turning operations based on the response surface methodology", Measure., 44(3), 580-587.
  18. Ozel, T. and Karpat, Y. (2005), "Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks", Int. J. Adv. Manufact. Technol., 45(4-5), 467-479.
  19. Paiva, A.P., Campos, P.H., Ferreira, J.R., Lopes, L.G.D., Paiva, E.J. and Balestrassi, P.P. (2012), "A multivariate robust parameter design approach for optimization of AISI 52100 hardened steel turning with wiper mixed ceramic tool", J. Refract. Met. Hard. Mater., 30(1), 152-163. https://doi.org/10.1016/j.ijrmhm.2011.08.001
  20. Paiva, A.P., Paiva, E.J., Ferreira, J.R., Balestrassi, P.P. and Costa, S.C. (2009), "A multivariate mean square error optimization of AISI 52100 hardened steel turning", Int. J. Adv. Manufact. Technol., 43(7-8), 631-643. https://doi.org/10.1007/s00170-008-1745-5
  21. Rashid, W.B., Goel, S., Davim, J.P. and Joshi, S.N. (2016), "Parametric design optimization of hard turning of AISI 4340 steel (69 HRC)", Int. J. Adv. Manufact. Technol., 82(1), 451-462. https://doi.org/10.1007/s00170-015-7337-2
  22. Shihab, S.K., Khan, Z.A., Mohammad, A. and Siddiquee, A.N. (2014), "Optimization of surface integrity in dry hard turning using RSM", Sadh., 39(5), 1035-1053. https://doi.org/10.1007/s12046-014-0263-4
  23. Xiaobin, C., Jingxia Guo, G. and Jianxin, Z. (2016), "Optimization of geometry parameters for ceramic cutting tools in intermittent turning of hardened steel", Mater. Des., 92, 424-437. https://doi.org/10.1016/j.matdes.2015.12.089
  24. Yallese, M.A., Chaoui, K., Zeghib, N., Boulanouar, L. and Rigal, J.F. (2009), "Hard machining of hardened bearing steel using cubic boron nitride tool", J. Mater. Pr. Technol., 209(2), 1092-1104. https://doi.org/10.1016/j.jmatprotec.2008.03.014
  25. Yin, Z., Huang, C., Yuan, J., Zou, B., Liu, H. and Zhu, H. (2015), "Cutting performance and life prediction of an $Al_2O_3$/TiCmicro-nano-composite ceramic tool when machining austenitic stainless steel", Ceram. Int., 41(5), 7059-7065. https://doi.org/10.1016/j.ceramint.2015.02.012

피인용 문헌

  1. Multi-objective optimization of mixed convection air cooling in an inclined channel with discrete heat sources vol.79, pp.1, 2018, https://doi.org/10.12989/sem.2021.79.1.051