참고문헌
- Allahkarami, F., Nikkhah-Bahrami, M. and Ghassabzadeh Saryazdi M. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155.
- Benito, J.J., Urena, F., Gavete, L., Salete, E. and Muelas, A. (2013), "A GFDM with PML for seismic wave equations in heterogeneous media", J. Comput. Appl. Math., 252, 40-51. https://doi.org/10.1016/j.cam.2012.08.007
- Chavan, S.G. and Lal, A. (2017), "Bending behavior of SWCNT reinforced composite plates", Steel Compos. Struct., Int. J., 24(5), 537-548.
- Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008
- Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310.
- Elmarakbi, A., Jianhua, W. and Azoti, W.L. (2016), "Non-linear elastic moduli of graphene sheet-reinforced polymer composites", Int. J. Solids Struct., 81, 383-392. https://doi.org/10.1016/j.ijsolstr.2015.12.019
- Fan, C.M. (2015), "Generalized finite difference method for solving two-dimensional inverse Cauchy problems", Inverse Probl. Sci. Eng., 23(5), 737-759. https://doi.org/10.1080/17415977.2014.933831
- Fan, C.M., Huang, Y.K., Li, P.W. and Chiu, C.L. (2014), "Application of the generalized finite-difference method to inverse biharmonic boundary-value problems", Numer. Heat Transfer, Part B, 65(2), 129-154. https://doi.org/10.1080/10407790.2013.849979
- Feng, C., Kitipornchai, S. and Yang, J. (2017a), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052
- Feng, C., Kitipornchai, S. and Yang, J. (2017b), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
- Gavete, L., Urena, F., Benito, J.J. and Salete, E. (2013), "A note on the dynamic analysis using the generalized finite difference method", J. Comput. Appl. Math., 252, 132-147. https://doi.org/10.1016/j.cam.2012.06.035
- Ghayumizadeh, H., Shahabian, F. and Hosseini, S.M (2013), "Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations (LIEs)", Eng. Anal. Bound. Elem. Method, 37, 1524-1531. https://doi.org/10.1016/j.enganabound.2013.08.011
- Ghouhestani, S., Shahabian, F. and Hosseini, S.M. (2014), "Application of meshless local Petrov-Galerkin (MLPG) method for dynamic analysis of multilayer functionally graded nanocomposite cylinders reinforced by carbon nanotubes subjected to shock loading", CMES: Comput. Model. Eng. Sci., 100(4), 295-321.
- Gu, Y., Wang, L., Chen, W., Zhang, C. and He, X. (2017), "Application of the meshless generalized finite difference method to inverse heat source problems", Eng. Anal. Bound. Elem., 108, 721-729.
- Hosseini, S.M. (2013), "Natural frequency analysis in functionally graded nanocomposite cylinders reinforced by carbon nanotubes using a hybrid mesh-free method", CMES: Comput. Model. Eng. Sci., 95(1), 1-29.
- Hosseini, S.M. (2014a), "Elastic wave propagation and time history analysis in functionally graded nanocomposite cylinders reinforced by carbon nanotubes using a hybrid mesh-free method", Eng. Computat., 31(7), 1261-1282. https://doi.org/10.1108/EC-12-2012-0312
- Hosseini, S.M. (2014b), "Application of a hybrid mesh-free method for shock-induced thermoelastic wave propagation analysis in a layered functionally graded thick hollow cylinder with nonlinear grading patterns", Eng. Anal. Bound. Elem., 43, 56-66. https://doi.org/10.1016/j.enganabound.2014.03.007
- Hosseini, S.M. (2015), "Shock-induced two dimensional coupled non-Fickian diffusion-elasticity analysis using meshless generalized finite difference (GFD) method", Eng. Anal. Bound. Elem., 61, 232-240. https://doi.org/10.1016/j.enganabound.2015.07.019
- Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2007), "Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials", Eng. Computat., 24(3), 288-303. https://doi.org/10.1108/02644400710735043
- Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001
- Kiani, Y. (2017), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin-Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061
- Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNTand graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., Int. J., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2017), "Meshless modeling of geometrically nonlinear behavior of CNTreinforced functionally graded composite laminated plates", Appl. Math. Computat., 295, 24-46. https://doi.org/10.1016/j.amc.2016.09.017
- Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H. and Abdel Wahab, M. (2017), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166, 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049
- Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., Int. J., 23(6), 623-631.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070
- Verma, D., Gope, P.C., Shandilya, A. and Gupta, A. (2014), "Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: A review", Transact. Indian Inst. Metals, 67(6), 803-816. https://doi.org/10.1007/s12666-014-0408-5
- Vullo, V. (2014), Circular Cylinders and Pressure Vessels: Stress Analysis and Designs, Springer International Publishing, Switzerland.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048
- Zhang, L.W. (2017), "Mechanical behavior of laminated CNTreinforced composite skew plates subjected to dynamic loading", Compos. Part B: Eng., 122, 219-230. DOI: 10.1016/j.compositesb.2017.03.041
- Zhang, L.W., Liu, W.H. and Liew, K.M. (2016), "Geometrically nonlinear large deformation analysis of triangular CNTreinforced composite plates", Int. J. Non-Linear Mech., 86, 122-132. https://doi.org/10.1016/j.ijnonlinmec.2016.08.004
- Zhang, L.W., Liu, W.H. and Xiao, L.N. (2017a), "Elastodynamic analysis of regular polygonal CNT-reinforced composite plates via FSDT element-free method", Eng. Anal. Bound. Elem., 76, 80-89. https://doi.org/10.1016/j.enganabound.2016.12.010
- Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017b), "Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads", Comput. Methods Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020
피인용 문헌
- Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.529
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.477
- Higher order plate theory for buckling analysis of plates based on exact solution vol.40, pp.3, 2018, https://doi.org/10.12989/scs.2021.40.3.451