DOI QR코드

DOI QR Code

Effect of Na2CO3 Addition on Grain Growth Behavior and Solid-state Single Crystal Growth in the Na0.5Bi0.5TiO3-BaTiO3 System

Na0.5Bi0.5TiO3-BaTiO3 계에서 입자성장 및 고상단결정성장에 미치는 Na2CO3 첨가 효과

  • Moon, Kyoung-Seok (School of Materials Science and Engineering, Gyeongsang National University)
  • 문경석 (경상대학교 나노.신소재공학부)
  • Received : 2018.04.02
  • Accepted : 2018.04.12
  • Published : 2018.04.28

Abstract

Grain-growth behavior in the $95Na_{1/2}Bi_{1/2}TiO_3-5BaTiO_3$ (mole fraction, NBT-5BT) system has been investigated with the addition of $Na_2CO_3$. When $Na_2CO_3$ is added to NBT-5BT, the growth rate is higher than desired and grains are already impinging each other during the initial stage of sintering. The grain size decreases as the sintering temperature increases. With the addition of $Na_2CO_3$, a liquid phase infiltrates the interfaces between grains during sintering. The interface structure can be changed to be more faceted and the interface migration rate can increase due to fast material transport through the liquid phase. As the sintering temperature increases, the impingement of abnormal grains increases because the number of abnormal grains increases. Therefore, the average grain size of abnormal grains can be decreased as the temperature increases. The phenomenon can provide evidence that grain coarsening in NBT-5BT with addition of $Na_2CO_3$ is governed by the growth of facet planes, which would occur via mixed control.

Keywords

References

  1. G. H. Haertling: J. Am. Ceram. Soc., 82 (1999) 797. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  2. J. Rodel, W. Jo, T. P. Seifert, E.-M. Anton, T. Granzow and D. Damjanovic: J. Am. Ceram. Soc., 92 (2009) 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  3. S. Swain, S. K. Kar and P. Kumar: Ceram. Int., 41 (2015) 10710. https://doi.org/10.1016/j.ceramint.2015.05.005
  4. D. Duraisamy and G. N. Venkatesan: Appl. Phys. Lett., 112 (2018) 052903. https://doi.org/10.1063/1.5009320
  5. S. E. Park: Mater. Res. Innov., 1 (1997) 20. https://doi.org/10.1007/s100190050014
  6. K.-S. Moon, D. Rout, H.-Y. Lee and S.-J. L. Kang: J. Cryst. Growth, 317 (2011) 28. https://doi.org/10.1016/j.jcrysgro.2011.01.023
  7. S.-J. L. Kang, J.-H. Park, S.-Y. Ko and H.-Y. Lee: J. Am. Ceram. Soc., 98 (2015) 347. https://doi.org/10.1111/jace.13420
  8. H. Sun, J. G. Fisher, S.-H. Moon, H. T. Tran, J.-S. Lee, H.-S. Han, H.-P. Kim and W. Job: Mater. Sci. Eng.: B, 223 (2017) 109. https://doi.org/10.1016/j.mseb.2017.06.009
  9. K.-S. Moon and S.-J. L. Kang: J. Am. Ceram. Soc., 91 (2008) 3191. https://doi.org/10.1111/j.1551-2916.2008.02620.x
  10. S.-J. L. Kang, M. G. Lee and S. M. An: J. Am. Ceram. Soc., 92 (2009) 1464. https://doi.org/10.1111/j.1551-2916.2009.03106.x
  11. T. Takahashi, K. I. Maruyama, and K. Sakata: Jpn. J. Appl. Phys., 30 (1991) 2236. https://doi.org/10.1143/JJAP.30.2236
  12. K.-S. Moon and S.-J. L. Kang: J. Korean Powder Metall. Inst., 13 (2006) 119. https://doi.org/10.4150/KPMI.2006.13.2.119
  13. M. S. Kim, J. G. Fisher, S.-J. L. Kang and H. Y. Lee: J. Am. Ceram. Soc., 89 (2006) 1237. https://doi.org/10.1111/j.1551-2916.2005.00883.x