DOI QR코드

DOI QR Code

A Study on the Presentation of Entrance Surface Dose Model using Semiconductor Dosimeter, General Dosimeter, Glass Dosimeter: Focusing on Comparative Analysis of Effective Dose and Disease Risk through PCXMC 2.0 based on Monte Carlo Simulation

반도체 선량계, 일반 선량계, 유리 선량계를 이용한 입사표면선량 모델 제시에 관한 연구: 몬테카를로 시뮬레이션 기반의 PCXMC 2.0을 통한 유효선량과 발병 위험도의 비교분석을 중심으로

  • Hwang, Jun-Ho (Department of Radiology, Kyunghee University Hospital) ;
  • Lee, Kyung-Bae (Department of Radiology, Kyunghee University Hospital)
  • 황준호 (경희대학교병원 영상의학과) ;
  • 이경배 (경희대학교병원 영상의학과)
  • Received : 2018.02.14
  • Accepted : 2018.04.30
  • Published : 2018.04.30

Abstract

One of the purposes of radiation protection is to minimize stochastic effects. PCXMC 2.0 is a Monte Carlo Simulation based program and makes it possible to predict effective dose and the probability of cancer development through entrance surface dose. Therefore, it is especially important to measure entrance surface dose through dosimeter. The purpose of this study is to measure entrance surface dose through semiconductor dosimeter, general dosimeter, glass dosimeter, and to compare and analyze the effective dose and probability of disease of critical organs. As an experimental method, the entrance surface dose of skull, chest, abdomen was measured per dosimeter and the effective dose and the probability of cancer development of critical organs per area was evaluated by PCXMC 2.0. As a result, the entrance surface dose per area was different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter even under the same condition. Base on this analysis, the effective dose and probability of developing cancer of critical organs were also different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter. In conclusion, it was found that the effective dose and the risk of diseases differ according to the dosimeter used, even under the same conditions, and through this study it was found that it is important to present an accurate entrance surface dose model according to each dosimeter.

방사선 방호의 목적 중 하나는 확률적 영향을 최소화 하는 것이다. PCXMC 2.0은 몬테카를로 시뮬레이션 기반의 프로그램으로 입사표면선량을 통해 유효선량과 암의 발병확률을 예측가능하게 해준다. 그렇기 때문에 선량계에 따른 입사표면선량 측정이 특히 중요하다. 본 연구는 반도체 선량계, 일반 선량계, 유리선량계를 통해 입사표면선량을 측정하고 그에 따른 결정 장기의 유효선량과 발병 확률을 비교분석 하는 것에 목적을 두었다. 실험방법은 두개부, 흉부, 복부의 선량계 별 입사표면선량을 측정하고 PCXMC 2.0을 통해 부위 별 결정 장기의 유효선량과 암의 발병 확률을 평가하였다. 그 결과 부위 별 입사표면선량은 동일한 조건임에도 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 이를 토대로 유효선량과 결정 장기의 암 발병 확률을 분석한 결과 또한 일반 선량계, 반도체 선량계, 유리 선량계 순으로 차이가 났다. 결론적으로 동일한 조건임에도 사용한 선량계에 따라 유효선량과 발병 위험도는 다르게 나타났음을 알 수 있었고, 본 연구를 통해 각각의 선량계에 따른 정확한 입사표면선량 모델을 제시하는 것이 중요하다는 것을 알 수 있었다.

Keywords

References

  1. Y. L. Kim, G. H. Kim, J. M. Kim, C. G. Kim, B. R. Park, J. Y. Sun, J. H. Son, J. S. Shin, J. D. Yeo, C. H. Yoon, S. G. Lee, J. S. Lee, C. S. Lim, J. Y. Jae, T. J. Ji, K. S. Chun, J. G. Choi, Diagnostic X-ray devices and Quality Control, Shin Kwang Publishing Corporation, Seoul, 2015.
  2. S. S. Hong, H. C. Kim, “A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System,” Journal of the Institute of Electronics Engineers of Korea, Vol. 50, No. 12, pp. 247-253, 2013.
  3. S. C. Kim, Digital Medical Imaging, Jungdam Publishing Corporation, Seoul, 2014.
  4. http://opendata.hira.or.kr/home.do
  5. M. Uffmann, C. Schaefer-prokop, "Digital Radiography: The Balance between Image and Required Radiation Dose," European Journal Radiology, Vol. 72, No.2, pp. 202-208, 2009. https://doi.org/10.1016/j.ejrad.2009.05.060
  6. Y. H. Seoung, “Development of Self-Diagnosis Linearity Quality Assurance Technique in Computed Tomography by Using Iodic Contrast Media,” The Journal of the Korea Contents Association, Vol. 15, No. 5, pp. 436-443, 2015. https://doi.org/10.5392/JKCA.2015.15.05.436
  7. Ministry of Health and Welfare No. 349, Rules for the Safety Management of Diagnostic Radiation Generators, 2007.
  8. J. J. Keun, D. C. Kweon, “Case Study of Quality As surance for MDCT Image Quality Evaluation Using AAPM CT Performance Phantom,” The Journal of the Korea Contents Association, Vol. 7, No. 7, pp. 114-123, 2007. https://doi.org/10.5392/JKCA.2007.7.7.114
  9. J. K. Park, "Medical Clinic's quality Management of X-ray Units in Gyeongbuk Area," The Journal of the Korea Contents Association, Vol. 10, No. 9, pp. 267-275, 2010. https://doi.org/10.5392/JKCA.2010.10.9.267
  10. B. S. Kang, J. H. Son, S. C. Kim, “Establishment of Quality Control System for Angiographic Unit,” The Journal of the Korea Contents Association, Vol. 11, No. 1, pp. 236-244, 2011. https://doi.org/10.5392/JKCA.2011.11.1.236
  11. H. G. Kim, T. J. Park, M. Baek, J. S. Lee, H. H. Lee, J. K. Jang, H. K. Jang, K. W. Jo, Y. O. Han, Radiation Theory and Reality (Revised Edition 7), 2015.
  12. J. G. P. Peixoto and P. Andreo, “Determination of Absorbed Dose to Water in Reference Conditions for Radiotherapy Kilovoltage X-rays between 10 and 300 kV : a Comparison of the Data in the IAEA, IPEMB, DIN and NCS Dosimetry Protocols,” Journal of Physics in Medicine & Biology, Vol. 45, No. 3, pp. 563-575, 2000. https://doi.org/10.1088/0031-9155/45/3/301
  13. Mettler, A. Fred, Huda, Walter, Yoshizumi, T. Terry, Mahesh, Mahadevappa, “Effective Doses in Radiology and Diagnostic Nuclear Medicine: a catalog,” Journal of Radiology, Vol. 248, No. 1, pp. 254-263, 2008. https://doi.org/10.1148/radiol.2481071451
  14. S. R. Wagner, B. Grosswendt, H.-J. Selbach, B. R. L. Siebert, J. R. Harvey, A. J. Mill, “Unified Conversion Functions for the New ICRU Operational Radiation Protection Quantities,” Radiation Protection Do simetry, Vol. 12, No. 2, pp. 231-235, 1985.
  15. J. H. Hwang, K. B. Lee, “A Study on the Usefulness of Glass Dosimeter in the Evaluation of Absorbed Dose by Comparing the Doses of Multi-purpose Dosimeter and Glass Dosimeter Using Kerma with PC XMC 2.0 in DR(Digital Radiography),” The Journal of the Korea Contents Association, Vol. 17, No. 9, pp. 292-299, 2017. https://doi.org/10.5392/JKCA.2017.17.09.292
  16. S. H. Jeong, M. G. Yoon, D. W. Kim, W. K. Chung, M. J. Chung, S. H. Choi, “Feasibility Study for Development of Transit Dosimetry based Patient Dose Verification System Using the Glass Dosimeter,” Progress in Medical Physics, Vol. 26, No. 4, pp. 241-249, 2015. https://doi.org/10.14316/pmp.2015.26.4.241
  17. ICRP, ICRP Report 103, 2007.
  18. A. Servomaa, M. Tapiovaara, “Organ Dose Calculation in Medical X Ray Examinations by the Program PCXMC,” Radiation Protection Dosimetry, Vol. 80, No. 1-3, pp. 213-220, 1998. https://doi.org/10.1093/oxfordjournals.rpd.a032509
  19. M. Hiligan, A. Idris, Elbakri, M. Reed, “Estimation of Organ and Effective Doses from Newborn Radiography of the Chest and Abdomen,” Radiation Protection Dosimetry, Vol. 156, No. 2, pp. 160-167, 2013. https://doi.org/10.1093/rpd/nct050
  20. J. M. Sabol, “A Monte Carlo Estimation of Effective Dose in Chest Tomosynthesis,” Journal of Medical Physics, Vol. 36, No. 12, pp. 5480-5487, 2009. https://doi.org/10.1118/1.3250907
  21. X. Zheng, “Patient Size based Guiding Equations for Automatic mAs and kVp Selections in General Medical X-ray Projection Radiography,” Radiation Protection Dosimetry, Vol. 174, No. 4, pp. 545-550, 2017.
  22. C. J. Martin, “An Evaluation of Semiconductor and Ionization Chamber Detectors for Diagnostic X-ray Dosimetry Measurements,” Journal of Physics in Medicine & Biology, Vol. 52, No. 15, pp. 4465-4480, 2007. https://doi.org/10.1088/0031-9155/52/15/007
  23. Z. M. Da Costa, W. M. Pontuschka, J. M. Giehl, C. R. Da Costa, "ESR dosimeter based on P2O5-CaO-Na2O glass system," Journal of Non-crystalline Solids, Vol. 352, No. 32/35, pp. 3663-3667, 2006. https://doi.org/10.1016/j.jnoncrysol.2006.03.113
  24. IAEA, Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements, 1994.
  25. J. B. Han, N. G. Choi, H. J. Sung, “Comparative Study of Radiation Exposure using Entrance Skin Dose Calculation Technique in Diagnostic X-Ray Radiography,” The Journal of the Korea Contents Association, Vol. 11, No. 12, pp. 357-363, 2011. https://doi.org/10.5392/JKCA.2011.11.12.357
  26. ICRP, ICRP Report 135, 2017.
  27. ICRU, ICRU Report 74, 2005.