DOI QR코드

DOI QR Code

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University) ;
  • Kim, Yoon A (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Sung Kyum (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University)
  • Received : 2017.12.26
  • Accepted : 2018.01.18
  • Published : 2018.04.28

Abstract

An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

Keywords

References

  1. Balat M, Balat H. 2009. Recent trends in global production and utilization of bioethanol fuel. Appl. Energy 86: 2273-2282. https://doi.org/10.1016/j.apenergy.2009.03.015
  2. Saini JK, Saini R, Tewari L. 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5: 337-353.
  3. Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, et al. 2017. Cellulosic ethanol: status and innovation. Curr. Opin. Biotechnol. 45: 202-211. https://doi.org/10.1016/j.copbio.2017.03.008
  4. Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011: 280696.
  5. Kasana RC, Gulati A. 2011. Cellulases from psychrophilic microorganisms: a review. J. Basic Microbiol. 51: 572-579. https://doi.org/10.1002/jobm.201000385
  6. Shi B, Ke X, Yu H, Xie J, Jia Y, Guo R. 2015. Novel properties for endoglucanase acquired by cell-surface display technique. J. Microbiol. Biotechnol. 25: 1856-1862. https://doi.org/10.4014/jmb.1503.03029
  7. Lima AO, Quecine MC, Fungaro MH, Andreote FD, Maccheroni W Jr, Araujo WL, et al. 2005. Molecular characterization of a $\beta$-1,4-endoglucanase from an endophytic Bacillus pumilus strain. Appl. Microbiol. Biotechnol. 68: 57-65. https://doi.org/10.1007/s00253-004-1740-1
  8. Pastor FI, Pujol X, Blanco A, Vidal T, Torres AL, Diaz P. 2001. Molecular cloning and characterization of a multidomain endoglucanase from Paenibacillus sp BP-23: evaluation of its performance in pulp refining. Appl. Microbiol. Biotechnol. 55: 61-68. https://doi.org/10.1007/s002530000470
  9. Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Kim H, et al. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73: 618-630. https://doi.org/10.1007/s00253-006-0523-2
  10. Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y, et al. 2007. Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J. Biotechnol. 129: 406-414. https://doi.org/10.1016/j.jbiotec.2007.01.020
  11. Cho KM, Hong SJ, Math RK, Islam SM, Kim JO, Lee YH, et al. 2008. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel 44C-man 26A. J. Basic Microbiol. 48: 464-472. https://doi.org/10.1002/jobm.200700281
  12. Fu X, Liu P, Lin L, Hong Y, Huang X, Meng X, et al. 2010. A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Appl. Biochem. Biotechnol. 160: 1627-1636. https://doi.org/10.1007/s12010-009-8648-2
  13. Shinoda S, Kanamasa S, Arai M. 2012. Cloning of an endoglycanase gene from Paenibacillus cookii and characterization of the recombinant enzyme. Biotechnol. Lett. 34: 281-286. https://doi.org/10.1007/s10529-011-0759-5
  14. Park IH, Chang J, Lee YS, Fang SJ, Choi YL. 2012. Gene cloning of endoglucanase Cel5A from cellulose-degrading Paenibacillus xylanilyticus KJ-03 and purification and characterization of the recombinant enzyme. Protein J. 31: 238-245. https://doi.org/10.1007/s10930-012-9396-7
  15. Dhar H, Kasana RC, Dutt S, Gulati A. 2015. Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int. J. Biol. Macromol. 81: 259-266. https://doi.org/10.1016/j.ijbiomac.2015.07.060
  16. Kanchanadumkerng P, Sakka M, Sakka K, Wiwat C. 2017. Characterization of endoglucanase from Paenibacillus sp. M33, a novel isolate from a freshwater swamp forest. J. Basic Microbiol. 57: 121-131. https://doi.org/10.1002/jobm.201600225
  17. Xu Z, Huang F. 2014. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 174: 43-62. https://doi.org/10.1007/s12010-014-1015-y
  18. Duan CJ, Huang MY, Pang H, Zhao J, Wu CX, Feng JX. 2017. Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes. Appl. Microbiol. Biotechnol. 101: 5723-5737. https://doi.org/10.1007/s00253-017-8320-7
  19. Kim IJ, Lee HJ, Choi IG, Kim KH. 2014. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl. Microbiol. Biotechnol. 98: 8469-8480. https://doi.org/10.1007/s00253-014-6001-3
  20. Kim SJ, Kim SH, Shin SK, Hyeon JE, Han SO. 2016. Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. Int. J. Biol. Macromol. 92: 159-166. https://doi.org/10.1016/j.ijbiomac.2016.06.091
  21. Na HB, Jung WK, Jeong YS, Kim HJ, Kim SK, Kim J, et al. 2015. Characterization of a GH family 8 $\beta$-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol. Lett. 37: 643-655. https://doi.org/10.1007/s10529-014-1724-x
  22. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
  23. Shin ES, Yang MJ, Jung KH, Kwon EJ, Jung JS, Park SK, et al. 2002. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol. 68: 3496-3501. https://doi.org/10.1128/AEM.68.7.3496-3501.2002
  24. Jeong YS, Na HB, Kim SK, Kim YH, Kwon EJ, Kim J, et al. 2012. Characterization of Xyn10J, a novel family 10 xylanase from a compost metagenomic library. Appl. Biochem. Biotechnol. 166: 1328-1339. https://doi.org/10.1007/s12010-011-9520-8
  25. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  26. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  27. Yang MJ, Lee HW, Kim H. 2017. Enhancement of thermostability of Bacillus subtilis endoglucanase by error-prone PCR and DNA shuffling. Appl. Biol. Chem. 60: 73-78.
  28. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  29. Kim DU, Kim HJ, Jeong YS, Na HB, Cha YL, Koo BC, et al. 2015. Enhanced saccharification of reed and rice straws by the addition of $\beta$-1,3-1,4-glucanase with broad substrate specificity and calcium ion. J. Korean Soc. Appl. Biol. Chem. 58: 29-33. https://doi.org/10.1007/s13765-015-0013-2
  30. Liu Y, Zhang J, Liu Q, Zhang C, Ma Q. 2004. Molecular cloning of novel cellulase genes cel9A and cel12A from Bacillus licheniformis GXN151 and synergism of their encoded polypeptides. Curr. Microbiol. 49: 234-238. https://doi.org/10.1007/s00284-004-4291-x
  31. Kim H, Kim SF, Ahn DH, Lee JH, Pack MY. 1995. Internal cleavage of Bacillus subtilis BSE616 endo-$\beta$-1,4-glucanase expressed in Escherichia coli. J. Microbiol. Biotechnol. 5: 26-30.
  32. Jung KH, Lee KM, Kim H, Yoon KH, Park SH, Pack MY. 1998. Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem. Mol. Biol. Int. 44: 283-292.
  33. Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, Ohmiya K. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multidomain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624. https://doi.org/10.1271/bbb.64.2614
  34. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. 2005. A novel $\beta$-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol. Lett. 248: 9-15. https://doi.org/10.1016/j.femsle.2005.05.009
  35. Chiriac AI, Cadena EM, Vidal T, Torres AL, Diaz P, Pastor FI. 2010. Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Appl. Microbiol. Biotechnol. 86: 1125-1134. https://doi.org/10.1007/s00253-009-2350-8
  36. Yi Z, Su X, Revindran V, Mackie RI, Cann I. 2013. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One 8: e84172. https://doi.org/10.1371/journal.pone.0084172
  37. Haq IU, Akram F, Khan MA, Hussain Z, Nawaz A, Iqbal K, et al. 2015. CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. World J. Microbiol. Biotechnol. 31: 1699-1710. https://doi.org/10.1007/s11274-015-1920-4
  38. Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, et al. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta 1570: 174-180. https://doi.org/10.1016/S0304-4165(02)00194-0
  39. Singh A, Bishnoi NR. 2012. Optimization of enzymatic hydrolysis of pretreated rice straw and ethanol production. Appl. Microbiol. Biotechnol. 93: 1785-1793. https://doi.org/10.1007/s00253-012-3870-1
  40. Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, et al. 2012. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7: e37010. https://doi.org/10.1371/journal.pone.0037010

Cited by

  1. Enzymatic identification and functional sites study of a novel cold-active cellulase (MkCel5) from Microbacterium kitamiensea vol.33, pp.1, 2018, https://doi.org/10.1080/13102818.2019.1612278
  2. Effect of Barium Addition on Hydrolytic Enzymatic Activities in Food Waste Degradation under Anaerobic Conditions vol.8, pp.11, 2020, https://doi.org/10.3390/pr8111371
  3. Molecular Characterization of Novel Family IV and VIII Esterases from a Compost Metagenomic Library vol.9, pp.8, 2018, https://doi.org/10.3390/microorganisms9081614
  4. Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws vol.31, pp.10, 2018, https://doi.org/10.4014/jmb.2105.05026