DOI QR코드

DOI QR Code

고속도로 자율주행자동차 제어권 전환 안전성 평가를 위한 시나리오 개발

Development of Safety Evaluation Scenario for Autonomous Vehicle Take-over at Expressways

  • 박성호 (아주대학교 건설교통공학과) ;
  • 정하림 (아주대학교 건설교통공학과) ;
  • 김경현 (교통안전공단) ;
  • 윤일수 (아주대학교 교통시스템공학과)
  • 투고 : 2018.03.20
  • 심사 : 2018.04.26
  • 발행 : 2018.04.30

초록

제4차 산업혁명 시대가 도래하면서 전 세계적으로 자율주행자동차에 대한 연구개발이 활발히 진행되고 있다. 이러한 국제적인 기조 속에서 국토교통부는 2020년 SAE 기준 레벨 3이상의 자율주행자동차 상용화를 목표로 자율주행자동차 관련 연구개발을 적극적으로 추진하고 있다. 레벨 3 수준의 자율주행자동차에서는 운전자와 자동차 상호 간의 운행주체를 주고받는 제어권 전환이 필수적으로 발생하게 된다. 본격적인 자율주행자동차 시대에 앞서 본 연구에서는 우선적으로 고속도로를 대상으로 가상현실을 이용한 제어권 전환 안전성 평가를 위하여 대표 시나리오를 개발하였다. 이를 위해 자율주행자동차의 고속도로 주행 시나리오를 만들었고, 2014년 발생한 고속도로 교통사고 경위자료와 제어권 전환 특성을 고려하여 6개의 제어권 전환 시나리오를 개발하였다. 개발된 시나리오에서 고려된 변수는 운전자, 차량, 그리고 환경요인으로 크게 나눌 수 있으며, 총 36개의 변수가 포함되었다.

In the era of the 4th Industrial Revolution, research and development on autonomous vehicles have been actively conducted all over the world. Under these international trends, the Ministry of Land, Infrastructure and Transport is actively promoting the development of autonomous vehicles aiming at commercialization of autonomous vehicles at level 3 or higher by 2020. In the level 3 autonomous vehicle, it is essential to transfer control between the driver and the vehicle according to driving situations. Prior to the full-fledged autonomous vehicle age, this study developed a representative scenario for the safety evaluation on take-over on expressways. To accomplish this, we developed a highway driving scenario first, and then developed six control transition scenarios based on 2014 highway traffic accident data and take-over data. The variables to be considered in the developed scenarios are divided into drivers, vehicles, and environmental factors. A total of 36 variables are selected.

키워드

참고문헌

  1. Choi(2017), A Study on Design Guidelines for Switching Driving Control of Autonomous Vehicles - Autonomous Driving Level 3, Ajou University.
  2. Christian G., Moritz K., Christoph H., David L. and Klaus B.(2015), 6th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences, pp.3025-3032.
  3. CNN(2012), Fianl Air France crash report says pilots failed to react swiftly.
  4. Gold C., Körber M., Hohenberger C., Lechner D. and Bengler K.(2015), "Trust in Automation-Before and After the Experience of Take-over Scenarios in a Highly Automated Vehicle," Procedia Manufacturing, vol. 3, pp.3025-3032. https://doi.org/10.1016/j.promfg.2015.07.847
  5. Korea Transportation Safety Authority(2016), Measures against Road Traffic Safety Projects prepared for Autonomous Vehicle Era.
  6. Lutz L., Philipp K. and Josef S.(2014), "Designing Take Over Scenarios for Automated Driving : How Does Aumented Reality Support the Driver to Get Back Into the Loop?," Proceedings of t he Human Factors and Ergonomics Society 58th Annual Meeting, pp.1681-1685.
  7. Min K., Her R., Kim K., Choi M. and Lee S.(2017), "A Proposal of Customized Notification System based on Scenarios to Cede Control on Autonomous Driving," Proceedings of OF HCI Korea, pp.1156-1160.
  8. Ministry of Land, Transport and Maritime Affairs(2013), Highway Capacity Manual.
  9. Navigant Research(2013), "Autonomous Vehicles(Self-Driving Vehicles, Autonomous Parking, and Other Advanced Driver Assistance Systems : Global Market Analysis and Forecasts," Published 3Q in 2013.
  10. SAE(2016), Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
  11. Zeeb K., Buchner A. and Schrauf M.(2015), "What determines the take-over time? An integrated model approach of driver take-over after automated driving," Accident Analysis & Prevention, vol. 78, pp.121-221.

피인용 문헌

  1. 지도학습 기반의 차원축소 모델을 이용한 특허 빅데이터 예측에 관한 연구 vol.15, pp.4, 2018, https://doi.org/10.17662/ksdim.2019.15.4.041
  2. A Study on the Evaluation Method of Highway Driving Assist System Using Monocular Camera vol.10, pp.18, 2020, https://doi.org/10.3390/app10186443