References
- E. T. Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934), no. 2, 258-277. https://doi.org/10.2307/1968431
- L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math. 75 (1953), 163-172. https://doi.org/10.2307/2372625
- L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
- G. Dattoli, C. Cesarano, and S. Lorenzutta, Bernoulli numbers and polynomials from a more general point of view, Rend. Mat. Appl. (7) 22 (2002), 193-202.
- G. Dattoli, S. Lorenzutta, and C. Cesarano, Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl. (7) 19 (1999), no. 3, 385-391.
- W. A. Khan, Degenerate Hermite-Bernoulli numbers and polynomials of the second kind, Prespacetime J. 9 (2016), no. 7, 1297-1305.
- T. K. Kim, Barnes' type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258 (2015), 556-564.
- T. Kim and D. V. Dolgy On the identities of symmetry for degenerate Bernoulli polynomials of order r, Adv. Stud. Contemp. Math. 25 (2015), no. 4, 457-462.
- D. S. Kim, T. Dolgy, and D. V. Komatsu, Barnes type degenerate Bernoulli polynomials, Adv. Stud. Contemp. Math. 25 (2015), no. 1, 121-146.
- D. S. Kim and T. Kim, Daehee numbers and polynomials, Appl. Math. Sci. (Ruse) 7 (2013), no. 117-120, 5969-5976.
-
D. S. Kim, Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on
$Z_p$ , Integral Transforms Spec. Funct. 26 (2015), no. 4, 295-302. https://doi.org/10.1080/10652469.2014.1002497 -
D. S. Kim, T. Kim, and D. V. Dolgy, A note on degenerate Bernoulli numbers and polynomials associated with p-adic invariant integral on
$Z_p$ , Appl. Math. Comput. 259 (2015), 198-204. - T. Kim, D. S. Kim, and H.-I. Kwon, Some identities relating to degenerate Bernoulli polynomials, Filomat 30 (2016), no. 4, 905-912. https://doi.org/10.2298/FIL1604905K
- T. Kim and J. J. Seo, A note on partially degenerate Bernoulli numbers and polynomials, J. Math. Anal. 6 (2015), no. 5, 1-6.
- D. S. Kim, T. Kim, H. I. Kwon, and J. J. Seo, Daehee polynomials with q-parameters, Adv. Studies Theor. Phys. 8 (2014), no. 13, 561-569. https://doi.org/10.12988/astp.2014.4570
- D. S. Kim, T. Kim, S. H. Lee, and J. J. Seo, A note on the lambda-Daehee polynomials, Int. J. Math. Anal. (Ruse) 7 (2013), no. 61-64, 3069-3080. https://doi.org/10.12988/ijma.2013.311264
- M. A. Pathan and W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials, Mediterr. J. Math. 12 (2015), no. 3, 679-695. https://doi.org/10.1007/s00009-014-0423-0
- M. A. Pathan, A new class of generalized polynomials associated with Hermite and Euler polynomials, Mediterr. J. Math. 13 (2016), no. 3, 913-928. https://doi.org/10.1007/s00009-015-0551-1
- K. Shiratani, Kummer's congruence for generalized Bernoulli numbers and its application, Mem. Fac. Sci. Kyushu Univ. Ser. A 26 (1972), 119-138.
- P. T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, J. Number Theory 128 (2008), no. 4, 738-758. https://doi.org/10.1016/j.jnt.2007.02.007