• Title/Summary/Keyword: degenerate Hermite-Bernoulli polynomials

Search Result 2, Processing Time 0.016 seconds

DEGENERATE BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH DEGENERATE HERMITE POLYNOMIALS

  • Haroon, Hiba;Khan, Waseem Ahmad
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.651-669
    • /
    • 2018
  • The article is themed to classify new (fully) degenerate Hermite-Bernoulli polynomials with formulation in terms of p-adic fermionic integrals on $\mathbb{Z}_p$. The entire paper is designed to illustrate new properties in association with Daehee polynomials in a consolidated and generalized form.

ON p-ADIC INTEGRAL FOR GENERALIZED DEGENERATE HERMITE-BERNOULLI POLYNOMIALS ATTACHED TO χ OF HIGHER ORDER

  • Khan, Waseem Ahmad;Haroon, Hiba
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.117-133
    • /
    • 2019
  • In the current investigation, we obtain the generating function for Hermite-based degenerate Bernoulli polynomials attached to ${\chi}$ of higher order using p-adic methods over the ring of integers. Useful identities, formulae and relations with well known families of polynomials and numbers including the Bernoulli numbers, Daehee numbers and the Stirling numbers are established. We also give identities of symmetry and additive property for Hermite-based generalized degenerate Bernoulli polynomials attached to ${\chi}$ of higher order. Results are supported by remarks and corollaries.