참고문헌
- Z. Ahsan and S. A. Siddiqui, Concircular curvature tensor and fluid spacetimes, Internat. J. Theoret. Phys. 48 (2009), no. 11, 3202-3212. https://doi.org/10.1007/s10773-009-0121-z
- J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981.
- M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387
- M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys. 21 (1994), no. 1-2, 1-7.
- C. J. S. Clarke, Singularities: global and local aspects, in Topological properties and global structure of space-time (Erice, 1985), 61-71, NATO Adv. Sci. Inst. Ser. B Phys., 138, Plenum, New York.
- A. De, C. Ozgur, and U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys. 51 (2012), no. 9, 2878-2887. https://doi.org/10.1007/s10773-012-1164-0
- U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
- R. Geroch, Space-time structure from a global viewpoint, in General relativity and cosmology (Proc. Internat. School of Physics "Enrico Fermi", Italian Phys. Soc., Varenna, 1969), 71-103, Academic Press, New York, 1971.
- S. Guler and S. Altay Demirbag, On Ricci symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes 16 (2015), no. 2, 853-868. https://doi.org/10.18514/MMN.2015.1447
- S. Guler, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys. 55 (2016), 548-562. https://doi.org/10.1007/s10773-015-2692-1
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London, 1973.
- P. S. Joshi, Global aspects in gravitation and cosmology, International Series of Monographs on Physics, 87, The Clarendon Press, Oxford University Press, New York, 1993.
-
S. Mallick and U. C. De, Spacetimes admitting
$W_2$ -curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030, 8 pp. https://doi.org/10.1142/S0219887814500303 - S. Mallick, Y. J. Suh, and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys. 57 (2016), no. 6, 062501, 10 pp. https://doi.org/10.1063/1.4952699
- C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
- C. A. Mantica, Pseudo-Z symmetric space-times, J. Math. Phys. 55 (2014), no. 4, 042502, 12 pp. https://doi.org/10.1063/1.4871442
- C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3
- B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
- H. Stephani, General relativity, translated from the German by Martin Pollock and John Stewart, Cambridge University Press, Cambridge, 1982.
- K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
- F. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.