DOI QR코드

DOI QR Code

PSEUDO PROJECTIVE RICCI SYMMETRIC SPACETIMES

  • 투고 : 2017.04.25
  • 심사 : 2017.09.14
  • 발행 : 2018.04.30

초록

The object of the present paper is to prove the non-existence of pseudo projective Ricci symmetric spacetimes $(PW\;RS)_4$ with different types of energy momentum tensor. We also discuss whether a fluid $(PW\;RS)_4$ spacetime with the basic vector field as the velocity vector field of the fluid can admit heat flux. Next we consider perfect fluid and dust fluid $(PW\;RS)_4$ spacetimes respectively. Finally we construct an example of a $(PW\;RS)_4$ spacetime.

키워드

참고문헌

  1. Z. Ahsan and S. A. Siddiqui, Concircular curvature tensor and fluid spacetimes, Internat. J. Theoret. Phys. 48 (2009), no. 11, 3202-3212. https://doi.org/10.1007/s10773-009-0121-z
  2. J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981.
  3. M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387
  4. M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys. 21 (1994), no. 1-2, 1-7.
  5. C. J. S. Clarke, Singularities: global and local aspects, in Topological properties and global structure of space-time (Erice, 1985), 61-71, NATO Adv. Sci. Inst. Ser. B Phys., 138, Plenum, New York.
  6. A. De, C. Ozgur, and U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys. 51 (2012), no. 9, 2878-2887. https://doi.org/10.1007/s10773-012-1164-0
  7. U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
  8. R. Geroch, Space-time structure from a global viewpoint, in General relativity and cosmology (Proc. Internat. School of Physics "Enrico Fermi", Italian Phys. Soc., Varenna, 1969), 71-103, Academic Press, New York, 1971.
  9. S. Guler and S. Altay Demirbag, On Ricci symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes 16 (2015), no. 2, 853-868. https://doi.org/10.18514/MMN.2015.1447
  10. S. Guler, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys. 55 (2016), 548-562. https://doi.org/10.1007/s10773-015-2692-1
  11. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London, 1973.
  12. P. S. Joshi, Global aspects in gravitation and cosmology, International Series of Monographs on Physics, 87, The Clarendon Press, Oxford University Press, New York, 1993.
  13. S. Mallick and U. C. De, Spacetimes admitting $W_2$-curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030, 8 pp. https://doi.org/10.1142/S0219887814500303
  14. S. Mallick, Y. J. Suh, and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys. 57 (2016), no. 6, 062501, 10 pp. https://doi.org/10.1063/1.4952699
  15. C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
  16. C. A. Mantica, Pseudo-Z symmetric space-times, J. Math. Phys. 55 (2014), no. 4, 042502, 12 pp. https://doi.org/10.1063/1.4871442
  17. C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3
  18. B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  19. S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
  20. H. Stephani, General relativity, translated from the German by Martin Pollock and John Stewart, Cambridge University Press, Cambridge, 1982.
  21. K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
  22. F. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.