DOI QR코드

DOI QR Code

Safety Assessment of Near Surface Disposal Facility for Low- and Intermediate-Level Radioactive Waste (LILW) through Multiphase-Fluid Simulations Based on Various Scenarios

다양한 시나리오 기반 유체거동 수치모사를 통한 중·저준위 방사성 폐기물 표층처분시설 안전성 평가

  • Jeong, Jina (Department of Geology, Kyungpook National University) ;
  • Kown, Mijin (Department of Geology, Kyungpook National University) ;
  • Park, Eungyu (Department of Geology, Kyungpook National University)
  • 정진아 (경북대학교 지구환경시스템과학부) ;
  • 권미진 (경북대학교 지구환경시스템과학부) ;
  • 박은규 (경북대학교 지구환경시스템과학부)
  • Received : 2018.03.26
  • Accepted : 2018.04.03
  • Published : 2018.04.28

Abstract

In the present study, the safety of the near surface disposal facility for low- and intermediate-level radioactive waste (LILW) is examined based on the fluid-flow simulation model. The effects of the structural design and hydrological properties of the disposal system are quantitatively evaluated by estimating the flux of infiltrated water at the boundary of the structure. Additionally, the safety margins of the disposal system, especially for the cover layer and vault, are determined by applying the various scenarios with consideration of possible facility designs and precipitation conditions. The overall results suggest that the disposal system used in this study is sufficiently suitable for the safe operation of the facility. In addition, it is confirmed that the soundness of both the cover layer and the vault have great impact on the safety of the facility. Especially, as shown in the vault degradation scenario, capability of the concrete barrier of the vault make more positive contribution on the safe operation of the facility compared to that of the cover layer.

본 연구에서는 중 저준위 방사성 폐기물 표층처분시설의 방사성 핵종 누출에 대한 안전성을 검증하기 위해 덮개층 및 처분고의 구조적 특성 및 물성이 고려된 유체거동 수치모사를 실시하였다. 유체거동 수치모사를 통해 시설 내 침투수거동 양상을 모사한 후, 덮개층 및 처분고 구조물 경계면을 따라 침투수 흐름 선속을 정량적으로 산정함으로써 방사성 핵종 누출의 위험성이 평가되었다. 또한 발생 가능한 시설 설계조건 및 외부 환경 변화가 고려된 다양한 시나리오 기반 수치모사를 실시함으로써 구축된 표층처분시설의 안전여유도 평가 또한 실시되었다. 그 결과, 본 연구에서 이용된 설계 구조가 표층처분시설의 안전적 운영에 적합한 것을 확인하였으며, 다양한 시나리오 기반 다중 수치모사 결과를 통해 덮개층과 처분고 수리특성의 건전성 유지 여부가 시설 안전성에 지대한 영향을 미침을 확인하였다. 특히, 처분고 콘크리트 벽체의 열화상황에서 처분고 내부로의 침투수 흐름을 관찰함으로써 처분고의 차수기능이 처분시설 안전성에 중요한 영향을 미치는 것으로 판단된다.

Keywords

References

  1. Carsel, R.F. and Parrish, R.S. (1988) Developing joint probability distribution of soil water retention characteristics, Water Resour. Res., v.24(5), p.755-769. https://doi.org/10.1029/WR024i005p00755
  2. International Atomic Energy Agency (1996) Planning and operation of low level waste disposal facilities, Proceedings of a symposium, Vienna, 17-21 June 1996, 617p.
  3. International Atomic Energy Agency (2007) Disposal aspects of low and intermediate level decommissioning waste, IAEA-TECDOC-1527, Vienna, 42p.
  4. International Commision on Radiological Protection (1985) Radiation protection principles for the disposal of solid radioactive waste, Pergamon Press, Oxford and New York.
  5. Jung, K.I., Kim, J.H., Kwon, M.J., Jeong, M.S., Hong, S.W. and Park, J.B. (2016) Comprehensive development plans for the low- and intermediate-level radioactive waste disposal facility in Korea and preliminary safety assessment, J. Nucl. Fuel Cycle Waste Tech., v.14(4), p.385-410. https://doi.org/10.7733/jnfcwt.2016.14.4.385
  6. Kozak, M.W. (2014) Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (Safety assessment for near-surface disposal of low- and intermediate-level radioactive waste), Woodhead Publishing, p.522-546.
  7. Kautsky, U., Saetre, P., Berglund, S., Jaeschke, B., Norden, S., Brandefelt, J., Keesmann, S., Naslund, J.-O. and Andersson, E. (2016) The impact of low and intermediate-level radioactive waste on humans and the environment over the next one hundred thousand years, J. Environ. Radioact., v.151, p.395-403. https://doi.org/10.1016/j.jenvrad.2015.06.025
  8. Kim, H.-J., Kim, M. and Park, J.B. (2017) Improvement of safety approach for accidents during operation of LILW disposal facility : application for operational safety assessment of the near-surface LILW disposal facility in Korea, J. Nucl. Fuel Cycle Waste Tech., v.15(2), p.161-172. https://doi.org/10.7733/jnfcwt.2017.15.2.161
  9. Korea Radioactive Waste Agency (KORAD), Construction Project, Radioactive Waste Project accessed March 29, 2018, https://www.korad.or.kr/korad/user/2016_new/02_10_20_20/main.jsp.
  10. Lemos, F.L., Sullivan, T., Friese, K., Ross, T. and Barbosa, S.C. (2002) Safety assessment of low and intermediate levels radioactive waste facilities using fuzzy logic: a case example, IEEE International Conference, Industrial informatics, 2003 August 21-24.
  11. Nuclear Regulatory Commission (1993) Application of an infiltration evaluation methodology to a hypothetical low-level waste disposal facility, NUREG/CR-6114 PNL-8842 Vol. 1.
  12. Richards, L.A. (1931) Capillary conduction of liquids through porous mediums, Physics., v.1(5), p.318-333. https://doi.org/10.1063/1.1745010
  13. Schneider, S., Mallants, D. and Jacques, D. (2012) Determining hydraulic properties of concrete and mortar by inverse modelling, Mater. Res. Soc. Symp. Proc., v.1475, p.367-372.
  14. U.S. Nuclear Regulatory Commission (2007) History and framework of commercial low-level radioactive waste management in the United States, Washington, 212p.
  15. U.S. Nuclear Regulatory Commission (1996) Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites, Washington, 142p.
  16. Van Genuchten, M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., v.44(5), p.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x