• Title/Summary/Keyword: flux of infiltrated water

Search Result 2, Processing Time 0.014 seconds

Study on Rainfall Infiltration Into Vault of Near-surface Disposal Facility Based on Various Disposal Scenarios

  • Kwon, Mijin;Kang, Hyungoo;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.503-515
    • /
    • 2021
  • In this study, rainfall infiltration in vault of the second near-surface disposal facility was evaluated on the basis of various disposal scenarios. A total of four different disposal scenarios were examined based on the locations of the radioactive waste containers. A numerical model was developed using the FEFLOW software and finite element method to simulate the behavior of infiltrated water in each disposal scenario. The effects of the disposal scenarios on the infiltrated water were evaluated by estimating the flux of the infiltrated water at the vault interfaces. For 300 years, the flux of infiltrated water flowing into the vault was estimated to be 1 mm/year or less for all scenario. The overall results suggest that when the engineered barriers are intact, the flux of infiltrated water cannot generate a sufficient pressure head to penetrate the vault. In addition, it is confirmed that the disposal scenarios have insignificant effects on the infiltrated water flowing into the vault.

Safety Assessment of Near Surface Disposal Facility for Low- and Intermediate-Level Radioactive Waste (LILW) through Multiphase-Fluid Simulations Based on Various Scenarios (다양한 시나리오 기반 유체거동 수치모사를 통한 중·저준위 방사성 폐기물 표층처분시설 안전성 평가)

  • Jeong, Jina;Kown, Mijin;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.131-147
    • /
    • 2018
  • In the present study, the safety of the near surface disposal facility for low- and intermediate-level radioactive waste (LILW) is examined based on the fluid-flow simulation model. The effects of the structural design and hydrological properties of the disposal system are quantitatively evaluated by estimating the flux of infiltrated water at the boundary of the structure. Additionally, the safety margins of the disposal system, especially for the cover layer and vault, are determined by applying the various scenarios with consideration of possible facility designs and precipitation conditions. The overall results suggest that the disposal system used in this study is sufficiently suitable for the safe operation of the facility. In addition, it is confirmed that the soundness of both the cover layer and the vault have great impact on the safety of the facility. Especially, as shown in the vault degradation scenario, capability of the concrete barrier of the vault make more positive contribution on the safe operation of the facility compared to that of the cover layer.