DOI QR코드

DOI QR Code

Microwave Dielectric Properties of Y2O3 and TiO2-Doped Ba(Mg0.5W0.5)O3 Ceramics

Y2O3 및 TiO2 첨가 Ba(Mg0.5W0.5)O3 세라믹스의 마이크로파 유전 특성

  • Hong, Chang-Bae (Department of Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Kwon, Sun-Ho (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University) ;
  • Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
  • 홍창배 (강릉원주대학교 재료공학과) ;
  • 김신 (강릉원주대학교 세라믹신소재공학과) ;
  • 권순호 (강릉원주대학교 세라믹신소재공학과) ;
  • 윤상옥 (강릉원주대학교 세라믹신소재공학과)
  • Received : 2018.01.18
  • Accepted : 2018.02.09
  • Published : 2018.05.01

Abstract

The phase evolution, microstructure, and microwave dielectric properties of $Ba(Mg_{0.5-2x}Y_{2x}W_{0.5-x}Ti_x)O_3$ (x = 0.005~0.05) ceramics sintered at $1,700^{\circ}C$ for 1h were investigated. All compositions exhibited a 1:1 ordered cubic perovskite structure. The field emission scanning electron microscopy image revealed a dense microstructure in all the compositions. As the value of x increased, the lattice parameter, dielectric constant, and quality factor increased. The temperature coefficient of resonant frequency changed from $-19.6ppm/^{\circ}C$ to $-5.9ppm/^{\circ}C$ with increasing x value. The dielectric constant, quality factor, and temperature coefficient of resonant frequency of $Ba(Mg_{0.40}Y_{0.10}W_{0.45}Ti_{0.05})O_3$ were 21.7, 132,685 GHz, and $-5.9ppm/^{\circ}C$, respectively.

Keywords

References

  1. H. Ohsato, J. Ceram. Soc. Jpn., 113, 703 (2005). [DOI: http://doi.org/10.2109/jcersj.113.703]
  2. I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006). [DOI: http://doi.org/10.1111/j.1551-2916.2006.01025.x]
  3. H. Takahashi, K. Ayusawa, and N. Sakamoto, Jpn. J. Appl. Phys., 36, 5597 (1997). [DOI: https://doi.org/10.1143/JJAP.36.5597]
  4. D. D. Khalyavin, J. Han, A.M.R. Senos, and P. Q. Mantas, J. Mater. Res., 18, 2600 (2003). [DOI: https://doi.org/10.1557/JMR.2003.0364]
  5. J. J. Bian, K. Yan, and Y. F. Dong, Mater. Sci. Eng., B, 147, 27 (2008). [DOI: https://doi.org/10.1016/j.mseb.2007.11.007]
  6. J. J. Bian, Y. F. Dong, and G. X. Song, J. Electroceram., 22, 390 (2009). [DOI: https://doi.org/10.1007/s10832-008-9425-2]
  7. J. Y. Wu and J. J. Bian, Ceram. Int., 38, 3217 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2011.12.027]
  8. J. Y. Wu and J. J. Bian, Ceram. Int., 39, 3641 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2012.10.193]
  9. J. Y. Wu and J. J. Bian, J. Am. Ceram. Soc., 97, 880 (2014). [DOI: https://doi.org/10.1111/jace.12726]
  10. J. Bian, J. Wu, R. Ubic, C. Karthik, and Y. Wu, J. Eur. Ceram. Soc., 35, 1431 (2015). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.11.015]
  11. Y. J. Lin, S. F Wang, S. H. Chen, Y. L. Liao, and C. L. Tsai, Ceram. Int., 41, 8931 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.03.166]
  12. J. J. Bian and J. Y. Wu, Ceram. Int., 42, 3290 (2016). [DOI: https://doi.org/10.1016/j.ceramint.2015.10.120]
  13. S. Kim, C. B. Hong, S. H. Kwon, and S. O. Yoon, J. Ceram. Process. Res., 18, 421 (2017).
  14. R. D. Shannon, Acta Cryst., A32, 751 (1976). [DOI: http://doi.org/10.1107/S0567739476001551]
  15. D. E. Bugaris, J. P. Hodges, A. Huq, and H. C. Loye, J. Solid State Chem., 184, 2293 (2011). [DOI: http://doi.org/10.1016/j.jssc.2011.06.015]
  16. R. D. Shannon, J. Appl. Phys., 73, 348 (1993). [DOI: https://doi.org/10.1063/1.353856]
  17. V. J. Fratello and C. D. Brandle, J. Mater. Res., 9, 2554 (1994). [DOI: https://doi.org/10.1557/JMR.1994.2554]
  18. R. Muhammad, Y. Iqbal, C. R. Rambo, and H. Khan, Int. J. Mater. Res., 105, 431 (2014). [DOI: https://doi.org/10.3139/146.111044]