DOI QR코드

DOI QR Code

Design of 1,200 V Class High Efficiency Trench Gate Field Stop IGBT with Nano Trench Gate Structure

1 um 미만의 나노트렌치 게이트 구조를 갖는 1,200 V 고효율 트렌치 게이트 필드스톱 IGBT 설계에 관한 연구

  • Kang, Ey Goo (Department of Energy IT Engineering, Far East University)
  • 강이구 (극동대학교 에너지IT공학과)
  • Received : 2018.01.30
  • Accepted : 2018.03.08
  • Published : 2018.05.01

Abstract

This paper details the design of a 1,200 V class trench gate field stop IGBT (insulated gate bipolar transistor) with a nano gate structure smaller than 1 um. Decreasing the size is important for lowering the cost and increasing the efficiency of power devices because they are high-voltage switching devices, unlike memory devices. Therefore, in this paper, we used a 2-D device and process simulations to maintain a gate width of less than 1 um, and carried out experiments to determine design and process parameters to optimize the core electrical characteristics, such as breakdown voltage and on-state voltage drop. As a result of these experiments, we obtained a wafer resistivity of $45{\Omega}{\cdot}cm$, a drift layer depth of more than 180 um, an N+ buffer resistivity of 0.08, and an N+ buffer thickness of 0.5 um, which are important for maintaining 1,200 V class IGBTs. Specially, it is more important to optimize the resistivity of the wafer than the depth of the drift layer to maintain a high breakdown voltage for these devices.

Keywords

References

  1. E. G. Kang, D. S. Oh, D. W. Kim, D. J. Kim, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 15, 758 (2002). [DOI: https://doi.org/10.4313/JKEM.2002.15.9.758]
  2. J. I. Lee, S. M. Yang, Y. S. Bae, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 23, 190 (2010). [DOI: https://doi.org/10.4313/JKEM.2010.23.3.190]
  3. T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer, and T. Schmidt, Proc. 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH 37094) (IEEE, Toulouse, France, 2000) p. 355.
  4. B. S. Ahn, H. S. Chung, E. S. Jung, S. J. Kim, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 187 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.3.187]
  5. J. S. Lee, E. G. Kang, and M. Y. Sung, Microelectron. J., 39, 57 (2008). [DOI: https://doi.org/10.1016/j.mejo.2007.10.023]
  6. Y. S. Hong, E. S. Jung, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 276 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.4.276]