DOI QR코드

DOI QR Code

ITERATIVE REWEIGHTED ALGORITHM FOR NON-CONVEX POISSONIAN IMAGE RESTORATION MODEL

  • Jeong, Taeuk (Department of Computational Science and Engineering Yonsei University) ;
  • Jung, Yoon Mo (Department of Mathematics Sungkyunkwan University) ;
  • Yun, Sangwoon (Department of Mathematics Education Sungkyunkwan University)
  • Received : 2017.06.28
  • Accepted : 2017.09.06
  • Published : 2018.05.01

Abstract

An image restoration problem with Poisson noise arises in many applications of medical imaging, astronomy, and microscopy. To overcome ill-posedness, Total Variation (TV) model is commonly used owing to edge preserving property. Since staircase artifacts are observed in restored smooth regions, higher-order TV regularization is introduced. However, sharpness of edges in the image is also attenuated. To compromise benefits of TV and higher-order TV, the weighted sum of the non-convex TV and non-convex higher order TV is used as a regularizer in the proposed variational model. The proposed model is non-convex and non-smooth, and so it is very challenging to solve the model. We propose an iterative reweighted algorithm with the proximal linearized alternating direction method of multipliers to solve the proposed model and study convergence properties of the algorithm.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems 25 (2009), no. 12, 123006, 26 pp.
  2. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning 3 (2011), 1-122.
  3. E. Bratsolis and M. Sigelle, A spatial regularization method preserving local photometry for Richardson-Lucy restoration, Astron. Astrophys. 375 (2001), 1120-1128. https://doi.org/10.1051/0004-6361:20010709
  4. E. J. Cande, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted $l_1$ minimization, J. Fourier Anal. Appl. 14 (2008), no. 5-6, 877-905. https://doi.org/10.1007/s00041-008-9045-x
  5. T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput. 22 (2000), no. 2, 503-516. https://doi.org/10.1137/S1064827598344169
  6. R. Chartrandn, Nonconvex regularization for shape preservation, in Proc. IEEE Intl. Conf. Image Processing (ICIP) 1 (2007), 293-296.
  7. D.-Q. Chen and L.-Z. Cheng, Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal, J. Comput. Appl. Math. 257 (2014), 29-45. https://doi.org/10.1016/j.cam.2013.08.012
  8. I. Daubechies, R. Devore, M. Fornasier, and C. S. Guntuurk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure Appl. Math. 63 (2010), no. 1, 1-38. https://doi.org/10.1002/cpa.20303
  9. M. A. T. Figueiredo and J. M. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process. 19 (2010), no. 12, 3133-3145. https://doi.org/10.1109/TIP.2010.2053941
  10. T. Jeong, H. Woo, and S. Yun, Frame-based Poisson image restoration using a proximal linearized alternating direction method, Inverse Problems 29 (2013), no. 7, 075007, 20 pp.
  11. D. Krishnan, and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in Proc. Adv. Neural Inf. Process. Syst. 22 (2009), 1-9.
  12. F. Li, C. Shen, J. Fan, and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent. 18 (2007), 322-330. https://doi.org/10.1016/j.jvcir.2007.04.005
  13. R. W. Liu and T. Xu, A robust alternating direction method for constrained hybrid variational deblurring model, Preprint, 2013.
  14. M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial differential equation with applaication to medical magnetic resonance images in space and time, IEEE Trans. Image Process. 12 (2003), 1579-1590. https://doi.org/10.1109/TIP.2003.819229
  15. M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. Vis. 66 (2006), 5-18. https://doi.org/10.1007/s11263-005-3219-7
  16. Y. Nesterov, Introductory Lectures on Convex Optimization, Applied Optimization, 87, Kluwer Academic Publishers, Boston, MA, 2004.
  17. P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM J. Imaging Sci. 8 (2015), no. 1, 331-372. https://doi.org/10.1137/140971518
  18. S. Oh, H. Woo, S. Yun, and M. Kang, Non-convex hybrid total variation for image denoising, J. Vis. Comm. Image R. 24 (2013), 332-344. https://doi.org/10.1016/j.jvcir.2013.01.010
  19. R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317, Springer-Verlag, Berlin, 1998.
  20. P. Sarder and A. Nehorai, Deconvolution methods for 3-d fluorescence microscopy images, IEEE Signal Process. Mag. 23 (2006), 32-45. https://doi.org/10.1109/MSP.2006.1628876
  21. S. Setzer, G. Steidl, and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image R. 21 (2010), 193-199. https://doi.org/10.1016/j.jvcir.2009.10.006
  22. L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Image 1 (1982), 113-122. https://doi.org/10.1109/TMI.1982.4307558
  23. Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci. 1 (2008), no. 3, 248-272. https://doi.org/10.1137/080724265
  24. C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci. 3 (2010), no. 3, 300-339. https://doi.org/10.1137/090767558