DOI QR코드

DOI QR Code

Concurrence of Rank-two Multipartite Quantum States

2-계수 양자상태의 양자얽힘 분석

  • Bae, Joonwoo (Department of Applied Mathematics, Hanyang University (ERICA))
  • 배준우 (한양대학교(에리카) 응용수학과)
  • Received : 2018.03.05
  • Accepted : 2018.03.28
  • Published : 2018.04.25

Abstract

In this work, we derive a general lower bound to concurrence of an arbitrary mixture of two pure states, that is, rank-two multipartite quantum states. We show that the lower bound can tightly detect entanglement of rank-two states, and also can be implemented experimentally with present-day technologies, i.e. single-copy level measurement and classical post-processing.

본 논문에서는 양자시스템이 두 순수상태가 임의대로 혼합된 상태, 즉 2-계수 양자상태, 에 존재할 때 시스템이 포함하는 양자얽힘의 일반적인 하한값을 유도하고 양자얽힘검증 및 양자상태 분리가능성 판별 방법을 제안한다.

Keywords

References

  1. J. Bae, "Designing quantum information processing via structural physical approximatios," Rep. Prog. Phys. 80, 10 (2017).
  2. R. F. Werner, "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model," Phys. Rev. A 40, 4277 (1988).
  3. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
  4. O. Guhne and G. Toth, "Entanglement detection," Phys. Rep. 474, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004
  5. M. Curty, M. Lewenstein, and N. Lutkenhaus, "Entanglement as precondition for secure quantum key distribution," Phys. Rev. Lett. 92, 217903 (2004). https://doi.org/10.1103/PhysRevLett.92.217903
  6. A. Acin and N. Gisin, "Quantum correlations and secret bits," Phys. Rev. Lett. 94, 020501 (2005). https://doi.org/10.1103/PhysRevLett.94.020501
  7. R. Raussendorf and H. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188
  8. G. Smith and J. Yard, "Quantum communication with zero-capacity channels," Sci. 321, 1812-1816 (2008). https://doi.org/10.1126/science.1162242
  9. L. Gurvits, "Classical deterministic complexity of edmonds problem and quantum entanglement," in Proc. 35th Annual ACM Symposium on Theory of Computing (USA, Jun. 2003), pp. 10-19.
  10. M. Horodecki, P. Horodecki, and R. Horodecki, "Separability of mixed states: necessary and sufficient conditions," Phys. Lett. A 223, 1-8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2
  11. A. Peres, "Separability Criterion for Density Matrices," Phys. Rev. Lett. 77, 1413-1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
  12. M.-D. Choi, "Some assorted inequalities for positive linear maps on C*-algebras," J. Operator Theory, 4, 271-285 (1980).
  13. H.-P. Breuer, "Optimal Entanglement Criterion for Mixed Quantum States," Phys. Rev. Lett. 97, 080501 (2006). https://doi.org/10.1103/PhysRevLett.97.080501
  14. W. Hall, "A new criterion for indecomposability of positive maps," J. Phys. A 39, 14119 (2006). https://doi.org/10.1088/0305-4470/39/45/020
  15. J. Korbicz, M. Almeida, J. Bae, M. Lewenstein, and A. Acin, "Structural approximations to positive maps and entanglement breaking channels," Phys. Rev. A 78, 062105 (2008). https://doi.org/10.1103/PhysRevA.78.062105
  16. G. Vidal, "Entanglement Monotone," J. Mod. Opt. 47, 355 (2000). https://doi.org/10.1080/09500340008244048
  17. C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters "Mixed State Entanglement and Quantum Error Correction". Phys. Rev. A. 54 3824-3851 (1996). https://doi.org/10.1103/PhysRevA.54.3824
  18. M. Christand and A. Winter, "Squashed entanglement - an additive entanglement measure," J. Maths. Phys. 45, 829 (2003).
  19. W. Wootters, "Entanglement of formation of an arbitrary state of two qubits," Phys. Rev. Lett. 80, 2245-2248 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
  20. A. Uhlmann, "Fidelity and concurrence of conjugated states," Phys. Rev. A 62, 032307 (2000). https://doi.org/10.1103/PhysRevA.62.032307
  21. P. Rungta and C. M. Caves, "Concurrence-based entanglement measures for isotropic states," Phys. Rev. A 67, 012307 (2003). https://doi.org/10.1103/PhysRevA.67.012307
  22. F. Mintert, M. Kus, and A. Buchleitner, "Concurrence of mixed bipartite quantum states in arbitrary dimensions," Phys. Rev. Lett. 92, 167902 (2004). https://doi.org/10.1103/PhysRevLett.92.167902
  23. F. Mintert, A. R. R. Carvalho, M. Kus, and A. Buchleitner, "Measures and dynamics of entangled states," 415, 207-259 (2005). https://doi.org/10.1016/j.physrep.2005.04.006
  24. K. Vollbrecht and R. F. Werner, "Entanglement measures under symmetry," Phys. Rev. A 64, 062307 (2001). https://doi.org/10.1103/PhysRevA.64.062307
  25. J. Bae, M. Tiersch, S. Sauer, F. de Melo, F. Mintert, B. Hiesmayr, and A. Buchleitner, "Detection and typicality of bound entangled states," Phys. Rev. A 80, 022317 (2009). https://doi.org/10.1103/PhysRevA.80.022317
  26. P. Horodecki, J. Smolin, B. M. Terhal, and A . V. Thapliyal, "Rank two bipartite bound entangled states do not exist," Theor. Comput. Sci. 292, 589-596 (2003). https://doi.org/10.1016/S0304-3975(01)00376-0
  27. L. Cattaneo and D. D'Alessandro, "Generalized concurrences do not provide necessary and sufficient conditions for entanglement detection," Quant. Inf. Com. 9, 66-180 (2009).
  28. S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert, and A. Buchleitner, "Experimental determination of entanglement with a single measurement," Nat. 440, 1022-1024 (2006). https://doi.org/10.1038/nature04627