Acknowledgement
Supported by : Kyonggi University
References
- Attar, M. (2012), "A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions", Int. J. Mech. Sci., 57(1), 19-33. https://doi.org/10.1016/j.ijmecsci.2012.01.010
- Banerjee, J.R., Su, H. and Jackson, D.R. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vibr., 298(4-5), 1034-1054. https://doi.org/10.1016/j.jsv.2006.06.040
- Behzad, M., Ghadami, A., Maghsoodi, A. and Hale, J.M. (2013), "Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks", J. Sound Vibr., 332(24), 6312-6320. https://doi.org/10.1016/j.jsv.2013.07.003
- Broda, D., Pieczonka, L., Hiwarkar, V., Staszewski, W.J. and Silberschmidt, V.V. (2016), "Generation of higher harmonics in longitudinal vibration of beams with breathing cracks", J. Sound Vibr., 381, 206-219. https://doi.org/10.1016/j.jsv.2016.06.025
- Caddemi, S. and Morassi, A. (2013), "Multi-cracked eulerbernoulli beams: Mathematical modeling and exact solutions", Int. J. Sol. Struct., 50(6), 944-956. https://doi.org/10.1016/j.ijsolstr.2012.11.018
- Caddemi, S. and Calio, I. (2009), "Exact closed-form solution for the vibration modes of the euler-bernoulli beam with multiple open cracks", J. Sound Vibr., 327(3-5), 473-489. https://doi.org/10.1016/j.jsv.2009.07.008
- Chaudhari, T.D. and Maiti, S.K. (1999), "Modelling of transverse vibration of beam of linearly variable depth with edge crack", Eng. Fract. Mech., 63(4), 425-445. https://doi.org/10.1016/S0013-7944(99)00029-6
- Cheng, Y., Yu, Z., Wu, X. and Yuan, Y. (2011), "Vibration analysis of a cracked rotating tapered beam using the p-version finite element method", Finit. Elem. Anal. Des., 47(7), 825-834. https://doi.org/10.1016/j.finel.2011.02.013
- Chondros, T.G., Dimarogonas, A.D. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound Vibr., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640
- Dimogoronas, A.D. (1996), "Vibration of cracked structures: A state of the art review", Eng. Fract. Mech., 55(5), 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
- Dona, M., Palmeri, A. and Lombardo, M. (2015), "Dynamic analysis of multi-cracked euler-bernoulli beams with gradient elasticity", Comput. Struct., 161, 64-76. https://doi.org/10.1016/j.compstruc.2015.08.013
- Fernandez-Saez, J., Morassi, A., Pressacco, M. and Rubio, L. (2016), "Unique determination of a single crack in a uniform simply supported beam in bending vibration", J. Sound Vibr., 371, 94-109. https://doi.org/10.1016/j.jsv.2016.02.010
- Hodges, D.H. and Rutkowski, M.J. (1981), "Free-vibration ananlysis of rotating beams by a variable-order finite element method", AIAA J., 19(11), 1459-1466. https://doi.org/10.2514/3.60082
- Kisa, M. and Gurel, M.A. (2007), "Free vibration analysis uniform and stepped cracked beams with circular cross sections", Int. J. Eng. Sci., 45(2-8), 364-380. https://doi.org/10.1016/j.ijengsci.2007.03.014
- Kundu, B. and Ganguli, R. (2017), "Analysis of weak solution of euler-bernoulli beam with axial force", Appl. Math. Comput., 298, 247-260.
- Lee, J.H. (2009), "Identification of multiple cracks in a beam using vibration amplitudes", J. Sound Vibr., 326(1-2), 205-212. https://doi.org/10.1016/j.jsv.2009.04.042
- Lee, J.W. and Lee, J.Y. (2016), "Free vibration analysis using the transfer-matrix method on a tapered beam", Comput. Struct., 164, 75-82. https://doi.org/10.1016/j.compstruc.2015.11.007
- Lee, J.W. and Lee, J.Y. (2017a), "A transfer matrix method capable of determining the exact solutions of a twisted bernoulli-euler beam with multiple edge cracks", Appl. Math. Model., 41, 474-493. https://doi.org/10.1016/j.apm.2016.09.013
- Lee, J.W. and Lee, J.Y. (2017b), "In-plane bending vibration analysis of a rotating beam with multiple edge cracks by using the transfer matrix method", Mecc., 52(4-5), 1143-1157. https://doi.org/10.1007/s11012-016-0449-4
- Lee, Y.S. and Chung, M.J. (2000), "A study on crack detection using eigenfrequency test data", Comput. Struct., 77(3), 327-342. https://doi.org/10.1016/S0045-7949(99)00194-7
- Li, X.F., Tang, A.Y. and Xi, L.Y. (2013), "Vibration of a rayleigh cantilever beam with axial force and tip mass", J. Constr. Steel. Res., 80, 15-22. https://doi.org/10.1016/j.jcsr.2012.09.015
- Loya, J.A., Rubio, L. and Fernandez-Saez, J. (2006), "Natural frequencies for bending vibrations of Timoshenko cracked beams", J. Sound Vibr., 290(3-5), 640-653. https://doi.org/10.1016/j.jsv.2005.04.005
- Mazanoglu, K. and Sabuncu, M. (2010), "Vibration analysis of non-uniform beams having multiple edge cracks along the beam's height", Int. J. Mech. Sci., 52(3), 515-522. https://doi.org/10.1016/j.ijmecsci.2009.11.016
- Nahvi, H. and Jabbari, M. (2005), "Crack detection in beams using experimental modal data and finite element model", Int. J. Mech. Sci., 47(10), 1477-1497. https://doi.org/10.1016/j.ijmecsci.2005.06.008
- Neves, A.C., Simoes, F.M.F. and Pinto Da Costa, A. (2016), "Vibrations of cracked beams: Discrete mass and stiffness models", Comput. Struct., 168, 68-77. https://doi.org/10.1016/j.compstruc.2016.02.007
- Rossit, C.A., Bambill D.V. and Gilardi G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685
- Ruotolo, R. and Surace, C. (1997), "Damage assessment of multiple cracked beams: Numerical results and experimental validation", J. Sound Vibr., 206(4), 567-588. https://doi.org/10.1006/jsvi.1997.1109
- Sarkar, K., Ganguli, R. and Elishakoff, I. (2016), "Closed-form solutions for non-uniform axially loaded rayleigh cantilever beams", Struct. Eng. Mech., 60(3), 455-470. https://doi.org/10.12989/sem.2016.60.3.455
- Sarkar, K. and Ganguli, R. (2014), "Modal tailoring and closedform solutions for rotating non-uniform euler-bernoulli beams", Int. J. Mech. Sci., 88, 208-220. https://doi.org/10.1016/j.ijmecsci.2014.08.003
- Skrinar, M. (2009), "Elastic beam finite element with an arbitrary number of transverse cracks", Finit. Elem. Anal. Des., 45(3), 181-189. https://doi.org/10.1016/j.finel.2008.09.003
- Sun, W., Sun, Y., Yu, Y. and Zheng, S. (2016), "Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method", Struct. Eng. Mech., 59(1), 1-14. https://doi.org/10.12989/sem.2016.59.1.001
- Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), "Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements", Int. J. Sol. Struct., 44(18-19), 5875-5893. https://doi.org/10.1016/j.ijsolstr.2007.02.002
- Wauer, J. (1990), "On the dynamics of cracked rotors: A literature survey", Appl. Mech. Rev., 43(1), 13-17. https://doi.org/10.1115/1.3119157
- Yan, Y., Ren, Q., Xia, N. and Zhang, L. (2016), "A closed-form solution applied to the free vibration of the euler-bernoulli beam with edge cracks", Arch. Appl. Mech., 86(9), 1633-1646. https://doi.org/10.1007/s00419-016-1140-x
- Yuan, J.H., Pao, Y.H. and Chen, W.Q. (2016), "Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section", Mecc., 227(9), 2625-2643.
- Zhang, K. and Yan, X. (2016), "Multi-cracks identification method for cantilever beam structure with variable cross-sections based on measured natural frequency changes", J. Sound Vibr., 387, 53-65.
- Zhou, Y., Zhang, Y. and Yao, G. (2017), "Stochastic forced vibration analysis of a tapered beam with performance deterioration", Acta Mech., 228(4), 1393-1406. https://doi.org/10.1007/s00707-016-1764-5
Cited by
- A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189