• Title/Summary/Keyword: axial force

Search Result 1,392, Processing Time 0.027 seconds

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load (이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성)

  • 홍동균;김광식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

Study on the Strength of Limit Axial Force and Accumulated Limit Axial Force of Concrete Filled Square Tube Columns (콘크리트 충전 각형강관 기둥부재의 한계축력 및 누적한계축력에 관한 연구)

  • Seo, Seong Yeon;Jung, Jin Ahn;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.605-615
    • /
    • 2005
  • Experimental and analytical work was conducted to investigate the relations of axial force and deformational capacity of concrete-filled square steel tube columns. The test series consisting of 36 columns were tested under the constant axial load and horizontal cyclic load. The axial force of the columns that resisted under the cyclic lateral load was defined as a certified strength of limit axial force. The analytical model was defined as a cantilever beam-column. The axial force of the beam-column that resisted under the cyclic lateral load was defined as an accumulated certified strength of limit axial force. The purpose of this study is to investigate the certified strength of limit axial force of concrete-filled steel tube beam-columns, which were subjected to both axial and lateral load condition corresponding to a given constant rotation angle. Another purpose of this study is to discuss the comparison of the certified strength of limit axial force of concrete and the accumulated certified strength of limit axial force of concrete-filled steel tube columns.

An Analytical Study on the Deformation Behavior of the Reinforced Concrete Circular Section Column under Bi-Axial Bending Moment and Axial Force (2축휨가 축력을 받는 철근콘크리트 원형단면주의 변형성상에 관한 해석적연구)

  • 정호길
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.163-172
    • /
    • 1997
  • This paper is a study on the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force. That is, this is to clarify the deformation behavior of the reinforced concrete circular section column carrying bi-axial bending moment and axial force by analytic methods. The deformation behavior of circular section column under bi-axial uni-axial bending moment and axial force are compare with those of a square section column under the same conditions. Those of circular section column under bi-axial bending moment are decreased as compared with those of circular section column under uni-axial bending moment. The results mentioned above are the same under the axial force of 7tons and 11tons.

  • PDF

A STUDY ON THE PREDICTION OF THE BASE FLOW CHARACTERISTICS OF A LAUNCH VEHICLE USING CFD

  • Kim Younghoon;Ok Honam;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.258-261
    • /
    • 2004
  • Numerical simulations are made to predict the axial force coefficients of a two-stage launch vehicle, and the results are compared with those by wind tunnel tests. It is found that the forebody axial force is not affected by whether the base of the body is modeled or not. Modeling the sting support used in wind tunnel tests reduced the base axial force compared to the results without it. The present calculation shows that the forebody axial forces are underestimated while the base axial forces are overestimated. The total axial force, therefore, compares with the experimental data with better accuracy by cancelling out the errors of opposite signs. Modeling of the sting support in numerical simulations is found to be necessary to get a better agreement with the experiments for both base and overall axial force coefficients.

  • PDF

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Characteristics of axial vibration of marine diesel engine crankshafts (박용디이젤기관의 크랭크축계 종진동특성에 관한 연구)

  • 전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.22-28
    • /
    • 1983
  • In former papers which were published already, authors had derived calculation formulae for the axial stiffness and the radial force conversion factor of crankshaft. In this paper, crankthrow axial stiffness and radial force conversion factors of actual engines are calculated by these theoretical formulae and then their characteristics are investigated. As the results, the axial stiffness and the radial force conversion factor of the latest super-long stroke engine are smaller than those of old-type engines. The influence of the former brings down the resonance speed of engine and the latter reduces the exciting force of axial vibration, but as the harmonic component of axial vibration force becomes rather strong, its effect of reducing is considerably canceled. In conclusion, as the latest super-long stroke engine is seemed to be liable to axial vibration of crankshafat, it is recommend that, in the design stage of propulsion shaft, its axial vibration condition must be more carefully checked.

  • PDF

Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside (스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석)

  • Park, Jun Hyuk;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

Axial Force of a V-Belt CVT -Experimental Study- (V-벨트 CVT의 축력해석 II -실험적 연구-)

  • 김광원;김현수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.847-854
    • /
    • 1989
  • Axial force of a V-belt CVT is investigated experimentally. The experimental results on speed ratio-torque-axial force show good agreement with the theoretical results that were obtained in the previous work. It is also found that torque capacity of the V-belt CVT increases as the axial force and the speed ratio increase. Impending slip which occurs at the maximum torque is determined via experiments for various speed ratios. Based on the impending slip region, and the theoretical curves for the speed ratio-torque-axial force relationship, an actual operating criteria for the V-belt CVT is obtained. It is suggested to use the actual operating criteria with the theoretical equations as a basic design formula for the V-belt CVT.

Reduction of the Axial Force of Water Pump Using CFD (전산유체역학을 이용한 워터펌프 축력 저감)

  • Jo, Sok-Hyun;Shin, Dong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.83-87
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) method has been used to investigate the axial force of automotive water pump. As the excessive axial force can make some unexpected problems like impeller interference and coolant leakage we have focused on finding the cause of axial force and its reduction in this paper. First, we have tested the closed type water pump with and without balance hole by the calculation methods. By examining the pressure contour around the impeller, we have found that the axial force arises not only from the pressure difference around shroud but also from the pressure difference around hub. So we have tested two impellers - one is normal open type impeller and the other is open type impeller with modified hub. The results show that the axial force reduction is about 150~200N for normal one and 700N@3000RPM for modified impeller. And the hydraulic efficiency which is important in aspect of engine fuel efficiency is reduced about 6.5% for normal one but increased 4%@3000RPM for modified impeller.