DOI QR코드

DOI QR Code

타이타니아 담지 활성촉매에 따른 요소 수용액의 암모니아 전환 효율 비교

Comparison of efficiencies of converting urea solution to ammonia depending on active catalyst metals on TiO2

  • 이명식 (서울과학기술대학교 에너지환경대학원) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Lee, Myung Sig (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Pak, Daewon (Graduate School of Energy and Environment, Seoul National University of Science & Technology)
  • 투고 : 2018.02.14
  • 심사 : 2018.03.16
  • 발행 : 2018.03.30

초록

본 연구에서는 질소산화물 제거용 환원제로 사용하는 요소 수용액을 암모니아로 전환하는데 있어 SCR 상용촉매의 활용가능성을 확인하기위해 촉매조성에 따른 반응온도, 공간속도의 영향에 대한 연구를 수행하였다. 연구결과 SCR 촉매로 널리 사용되는 $V_2O_5/TiO_2$ 촉매는 $TiO_2$$WO_3-V_2O_5/TiO_2$ 촉매에 비해 암모니아 생성이 우수함을 보였다. 활성금속을 담지하지 않은 $TiO_2$ 촉매는 $V_2O_5$ 혹은 $WO_3-V_2O_5$를 담지 한 촉매에 비해 공간속도에 따른 암모니아 전환에 영향을 받지 않는 것으로 나타났으며, 활성금속을 담지 한 촉매는 공간속도가 증가함에 따라 암모니아 생성 농도가 감소됨을 확인하였다.

In this study, selective catalytic reductions (SCR) of NO commercial catalysts were used to investigate the effect of ammonia gasification from urea solution. The effects of catalytic chemical composition on the reaction temperature and space velocity were studied. $V_2O_5/TiO_2$ catalysts, which are widely used as SCR catalysts for removal of nitrogen oxides, have better ammonia formation compare to $TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts. The $TiO_2$ catalyst not supporting the active metal was not affected by the space velocity as compared with the catalyst supporting $V_2O_5$ or $WO_3-V_2O_5$. The active metal supported catalysts decreased in the ammonia formation as the space velocity increased.

키워드

참고문헌

  1. M.W. Soon, Y.J. Kim, and L. Myllyvirta, "Silent killer: Fine particulate matter," Greenpeace, pp. 23-33, (2015).
  2. Ministry of Environment, "Fine dust,", pp. 5-10, (2016).
  3. V.I. Parvulescu, P. Grange, and B. Delmon, "Catalytic removal of NO," Catal. Taday, Vol. 46, No. 4, pp. 216-233(1998).
  4. IMO, "Clean North Sea Shipping Technology, NOx emissions,", pp. 78-86, (2010).
  5. S.H. Hong, "Denitrification catalyst Technology Trends," Ceramist, The Korea Ceramic Society, Vol. 10, No. 1, 53-64, (2007).
  6. S. Salimian, and R.K. Hanson, “Kinetic study of NO removal from combustion gas by Injection of NHi-containing compound,” Combust. Sci. Technol., Vol. 23, No. 5-6, pp. 225-230, (1980). https://doi.org/10.1080/00102208008952413
  7. Y.Y. Park, H.C. Song, G.J. Ahn, C.S. Shim, “Preliminary study on factor technology of selective catalytic reduction system in marine diesel engine,” J. Navig. Port Res., Vol. 40, No. 4, pp. 173-181, (2016). https://doi.org/10.5394/KINPR.2016.40.4.173
  8. M.U. Alzueta, R. Bilbao, A. Millera, M. Oliva, and J.C. Ibanez, “Impact on new findings concerning urea decomposition on the modeling of the urea SNCR process,” Energy Fuels, Vol. 14, No. 2, pp. 509-510, (2000). https://doi.org/10.1021/ef990187j
  9. H.L. Fang, and H.F.M. DaCosta "Urea thermolysis and NOx reduction with and without SCR catalysts," Applied Catalysis B: Environmental, Vol. 46, No. 1, pp. 17-34, (2003). https://doi.org/10.1016/S0926-3373(03)00177-2
  10. S.K. Jo, K.T. Kim, D.H. Lee, and Y.H. Song, “Performance evaluation for fast conversion from urea to an ammonia conversion technology with a plasma burner,” J. Kor. Soc. Atm. Environ., Vol. 32, No. 5, pp. 526-535, (2016). https://doi.org/10.5572/KOSAE.2016.32.5.526
  11. G. Zheng, A. Fila, A. Kortba, and R. Floyd, "Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Trucks," SAE International Technical Papaer, 2010-01-1941, (2010).
  12. S.H. Moon, “A Study on the Thermal Decomposition and Injection Direction of the Urea Solution Used in DeNOx Process,” J. of KSEE, Vol. 31, No. 7, pp. 531-540, (2009).
  13. I.S. Nam, S.D. Yim, S.J. Kim, J.H. Baik, Y.S. Mok, J.H. Lee, B.K. Cho, S.H. Oh, “Decomposition of Urea into NH3 for the SCR Process,” Ind. Eng. Chem. Res., Vol. 43, No. 16, pp. 4856-4863, (2004). https://doi.org/10.1021/ie034052j
  14. L. Lietti,"Reactivity of $V_2O_5$-$WO_3$/$TiO_2$ deNOx Catalysts by Transient methods," Appl. Catal. B: Environmental, Vol. 10, pp. 281-297, (1996). https://doi.org/10.1016/S0926-3373(97)80001-X
  15. G. Yan, L. Tao, C. Kai, and X. Hongming, "Performance of $V_2O_5$-$WO_3$-MoO3/$TiO_2$ catalyst for selective catalytic reduction of NOx by $NH_3$," Chin. J. Chem. Eng., Vol. 21, No. 1, pp. 1-7, (2013). https://doi.org/10.1016/S1004-9541(13)60434-6
  16. T. Liuqing, Y. Daiqi, and L. Hong, "Catalytic performance of a novel ceramic-supported vanadium oxide catalyst for NO reduction with $NH_3$," Catal. Today, Vol. 78, No. 1-4, pp. 159-164, (2003). https://doi.org/10.1016/S0920-5861(02)00322-X
  17. I.J. Shon, “Effect of graphene addition on the mechanical properties of $TiO_2$,” Korean J. Met. Mater., Vol. 55, No. 2, pp. 110-114, (2017). https://doi.org/10.3365/KJMM.2017.55.2.110
  18. K.Y. Pan, and D.H. Wei, "Optoelectronic and electrochemical properties of vanadium pentoxide nanowires synthesized by vapor-solid process," Nanomaterials, Vol. 6, No. 8, 140, (2016). https://doi.org/10.3390/nano6080140
  19. A. Marberger, A. Elsener, and O. Krocher, “VOx surface coverage optimization of $V_2O_5$-$WO_3$-$TiO_2$ SCR catalysts by variation of the V loading and by aging,” Catal., Vol. 5, No. 4, pp. 1704-1720, (2015). https://doi.org/10.3390/catal5041704
  20. C. Cristiani, M. Bellotto, P. Forzatti, and F. Bregani, "On the morphological properties of tungsta-titania de-NOxing catalysts," J. Mater. Res., Vol. 8, No. 8, 2019-2025, (1993). https://doi.org/10.1557/JMR.1993.2019