DOI QR코드

DOI QR Code

메카니즘 해석을 통해 바라본 홍합접착제 연구동향

Brief Review on Mussel Adhesives by Evaluating Its Adhesion and Cohesion Mechanisms

  • 강병언 (인하공업전문대학 화공환경과) ;
  • 이재성 (인하공업전문대학 화공환경과) ;
  • 오경석 (인하공업전문대학 화공환경과)
  • Kang, Byoung-Un (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Lee, Jae-Sung (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Oh, Kyeong-Seok (Department of Chemical and Environmental Technology, Inha Technical College)
  • 투고 : 2018.02.05
  • 심사 : 2018.03.06
  • 발행 : 2018.03.30

초록

홍합 족사 단백질은 수분이 있는 표면에서도 강한 접착력을 가진다. 홍합 연구에 대표가 되는 marine blue mussel을 통해 9가지 단백질의 구조와 기능이 보고되었으며, 이 단백질들은 홍합 족사를 구성하는 실(threads)과 플래크(plaques)를 형성한다. 알려진 바에 의하면, 히드록시기 2개가 포함된 카테콜 기능기를 가진 DOPA 물질이 계면접착(adhesion)과 내부결합(cohesion) 과정에서 중요한 역할을 하는 것으로 알려져 있다. 본 논문에서는, 최근 10년간 활발히 연구된 계면접착과 내부응력 메카니즘에 대해 소개하고 평가하였다. 또한, 접착력을 갖는 기능기를 활용한 발전된 접착소재의 개발, 바이오접착제와 의료용 소재로 응용가능성에 대해 살펴보았다. 홍합 단백질이 다시 관심의 대상이 되면서, 바이오소재로 사용될 가능성이 커지고 있음이 주목된다.

Mussel byssal protein has strong adhesive capability even in wet surface. It has been reported that nine proteins in marine blue mussel, often referred to a representative mussel, contribute to form mussel byssal threads and plaques. DOPA containing two hydroxy groups called cathecol is recognized that it plays a major role in adhesion as well as cohesion process within byssal structure. In this paper, adhesion and cohesion mechanisms were introduced and evaluated by supportive literature published during last decade. Diverse applications of cathecol chemicals were also examined in terms of innovative adhesive, bioadhesive and challenging material for tissue engineering. It is noticeable that reconsideration of mussel proteins could provide the various opportunities as biomaterials.

키워드

참고문헌

  1. B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, "Mussel-Inspired Adhesives and Coatings," Annu. Rev. Mater. Res., Vol. 41, pp. 99-132, (2011). https://doi.org/10.1146/annurev-matsci-062910-100429
  2. H.G. Silverman, F.F. Roberto, “Understanding Marine Mussel Adhesion,” Mar. Biotechnol., Vol. 9, No. 6, pp. 661-681, (2007). https://doi.org/10.1007/s10126-007-9053-x
  3. P.K. Forooshani, B.P. Lee, "Recent Approaches in Designing Bioadhesive Materials Inspired by Mussel Adhesive Protein," J. Polym. Sci., Part A: Polym. Sci., Vol. 55, pp. 9-33, (2017). https://doi.org/10.1002/pola.28368
  4. Bureau of Reclamation, "Review of Museel Adhession Mechanism and Scoping Study," Technical Memorandum, No. MERL-2013-43, Technical Service Center, Materials Engineering and Research Laboratory, Denver, Colorado, (2013).
  5. D.S. Hwang, H.J. Yoo, J.H. Jun, W.K. Moon, H.J. Cha, “Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli,” Appl. Environ. Mirobiol., Vol. 70, No. 6, pp. 3352-3359, (2004). https://doi.org/10.1128/AEM.70.6.3352-3359.2004
  6. J.H. Waite, "Mussel Adhesion-Essential Footwork," J. Exp. Biol., Vol. 220, pp. 517-530, (2017). https://doi.org/10.1242/jeb.134056
  7. J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili, J. H. Waite, “Mussel Protein Adhesion Depends on Thiol-Mediated Redox Modulation,” Nat. Chem. Biol., Vol. 7, No. 9, pp. 588-590, (2011). https://doi.org/10.1038/nchembio.630
  8. J.R. Burkett, J.R. Wojtas, J.L. Cloud, J.J. Wilker, "A Method for Measuring the Adhesion Strength of Marine Mussels," J. Adhes., Vol. 85, pp. 601-615, (2009). https://doi.org/10.1080/00218460902996903
  9. K. Numata, P.J. Baker, "Synthesis of Adhesive Peptides Similar to Those Found in Blue Mussel (Mytilus edulis) Using Pappain and Tyrosinase," Biomacromolecules, Vol. 15, pp. 3206-3212, (2014). https://doi.org/10.1021/bm5009052
  10. J.J. Wilker, “Redox and Adhesion on the Rocks,” Nat. Chem. Biol., Vol. 7, No. 9, pp. 579-580, (2011). https://doi.org/10.1038/nchembio.639
  11. https://www.fishersci.com/shop/products/corning-cell-tak-cell-tissue-adhesive-3/p-90828
  12. H.J. Cha, D.S. Hwang, S. Lim, "Development of Bioadhesives from Marine Mussels," Biotechnology J., Vol. 3, pp. 631-638, (2008). https://doi.org/10.1002/biot.200700258
  13. http://www.celltrion.com
  14. https://www.samsungbiologics.com
  15. http://www.postech.ac.kr/tag/네이처글루텍/
  16. Enger, E.D., Ross, F.C., Bailey, D.B., Concepts in Biology, 14th ed., pp. 236-238, McGraw-Hill Companies Inc., New York, (2009)
  17. H. Lee, B.P. Lee, P.B. Messersmith, "A Reversible Wet/Dry Adhesive Inspired by Mussels and Geckos, Nature, Vol. 448, pp. 338-341, (2007). https://doi.org/10.1038/nature05968
  18. L. Hamers, "Animal Goo Inspires Better Glue," Science News, Vol. 192, No. 5, p.14 (2017).
  19. S. Hong, I. You, I.T. Song, H. Lee, "Material-Independent Surface Functionalization Inspired by Mussel-Adhesion, Polym Sci. Tech., Vol. 23, No. 4, 396-406, (2012).
  20. E. Shin, S. W. Ju, L. An, E. Ahn, J.-S. Ahn, B.-S. Kim, B.K. Ahn, “Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites,” ACS Appl. Mater. Interfaces, Vol. 10, No. 2, pp. 1520-1527, (2018). https://doi.org/10.1021/acsami.7b14679
  21. http://www.amsbio.com/productpage.aspx?code=260085
  22. M. Rahimnejad, W. Zhong, "Mussel Inspired Hydrogel Tissure Adhesives for Wound Closure," RCS Adv., Vol. 7, pp. 47380-47396, (2017).
  23. B.K. Ahn, S. Das, R. Linstadt, Y. Kaufman, N.R. Martinez-Rodriguez, R. Mirshfian, E. Kesselman, Y. Talmon, B.H. Lipshutz, J.N. Israelachvili, J.H. Waite, "High-Performance Mussel-Inspired Adhesives of Reduced Complexity," Nat. Commun., Vol. 6, p.8633, (2015). https://doi.org/10.1038/ncomms9633
  24. E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili, B.K. Ahn, M.T. Valentine, "Toughning Elastomers using Mussel-Inspired Iron-Catechol Complexes," Science, Vol. 358, pp. 502-505, (2017). https://doi.org/10.1126/science.aao0350