DOI QR코드

DOI QR Code

Performance Comparison of Vertical DMOSFETs in Ga2O3 and 4H-SiC

Ga2O3와 4H-SiC Vertical DMOSFET 성능 비교

  • Chung, Eui Suk (Dept. of Electronic Engineering, Sogang University) ;
  • Kim, Young Jae (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Dept. of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2018.01.10
  • Accepted : 2018.03.12
  • Published : 2018.03.31

Abstract

Gallium oxide ($Ga_2O_3$) and silicon carbide (SiC) are the material with the wide band gap ($Ga_2O_3-4.8{\sim}4.9eV$, SiC-3.3 eV). These electronic properties allow high blocking voltage. In this work, we investigated the characteristic of $Ga_2O_3$ and 4H-SiC vertical depletion-mode metal-oxide-semiconductor field-effect transistors. We demonstrated that the blocking voltage and on-resistance of vertical DMOSFET is dependent with structure. The structure of $Ga_2O_3$ and 4H-SiC vertical DMOSFET was designed by using a 2-dimensional device simulation (ATLAS, Silvaco Inc.). As a result, 4H-SiC and $Ga_2O_3$ vertical DMOSFET have similar blocking voltage ($Ga_2O_3-1380V$, SiC-1420 V) and then when gate voltage is low, $Ga_2O_3-DMOSFET$ has lower on-resistance than 4H-SiC-DMOSFET, however, when gate voltage is high, 4H-SiC-DMOSFET has lower on-resistance than $Ga_2O_3-DMOSFET$. Therefore, we concluded that the material of power device should be considered by the gate voltage.

산화갈륨 ($Ga_2O_3$)과 탄화규소 (SiC)는 넓은 밴드 갭 ($Ga_2O_3-4.8{\sim}4.9eV$, SiC-3.3 eV)과 높은 임계전압을 갖는 물질로서 높은 항복 전압을 허용한다. 수직 DMOSFET 수평구조에 비해 높은 항복전압 특성을 갖기 때문에 고전압 전력소자에 많이 적용되는 구조이다. 본 연구에서는 2차원 소자 시뮬레이션 (2D-Simulation)을 사용하여 $Ga_2O_3$와 4H-SiC 수직 DMOSFET의 구조를 설계하였으며, 항복전압과 저항이 갖는 trade-off에 관한 파라미터를 분석하여 최적화 설계하였다. 그 결과, 제안된 4H-SiC와 $Ga_2O_3$ 수직 DMOSFET구조는 각각 ~1380 V 및 ~1420 V의 항복 전압을 가지며, 낮은 게이트 전압에서의 $Ga_2O_3-DMOSFET$이 보다 낮은 온-저항을 갖고 있지만, 게이트 전압이 높으면 4H-SiC-DMOSFET가 보다 낮은 온-저항을 갖을 수 있음을 확인하였다. 따라서 적절한 구조와 gate 전압 rating에 따라 소자 구조 및 gate dielectric등에 대한 심화 연구가 요구될 것으로 판단된다.

Keywords

References

  1. L. A. Franks, B. A. Brunett, R. W. Olsen, D. S. Walsh, G. Vizkelethy, J. I. Trombka, B. L. Doyle, R. B. James, "Radiation damage measurements in room-temperature semiconductor radiation detectors," Nucl. Inst Meth A. 428, 95, 1999.DOI:10.1016/S0168-9002(98)01585-X
  2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies," Journal of Applied Physics 76, 1363, 1994.DOI:10.1063/1.358463
  3. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide ($Ga_2O_3$) metal-semiconductor field- effect transistors on single-crystal ${\beta}-Ga_2O_3$ (010) substrates," Appl. Phys. Lett. 100, 013504 Issue 1, 2012.DOI:10.1063/1.3674287
  4. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode $Ga_2O_3$ metal-oxide-semiconductor field-effect transistors on ${\beta}-Ga_2O_3$ (010) substrates and temperature dependence of their device characteristics," Appl. Phys. Lett. 103, 123511, 2013.DOI:10.1063/1.4821858
  5. Y. P. Qian, D. Y. Guo, X. L. Chu, H. Z. Shi, W. K. Zhu, K. Wang, X. K. Huang, H. Wang, S. L. Wang, P. G. Li, X. H. Zhang, W. H. Tang, "Mg-doped p-type ${\beta}-Ga_2O_3$ thin film for solar-blind ultraviolet photodetector," Materials Letters. 209, 558-561, 2013.DOI: 10.1016/j.matlet.2017.08.052
  6. D. Guo, X. Qin, M. Lv, H. Shi, Y. Su, G. Yao, S. Wang, C. Li, P. Li, and W. Tang, "Decrease of Oxygen Vacancy by Zn-Doped for Improving Solar-Blind Photoelectric Performance in ${\beta}-Ga_2O_3$ Thin Films," Electron. Materials Letter 13, 6, 483-488, 2017.DOI: 10.1007/s13391-017-7072-y