DOI QR코드

DOI QR Code

Cure Kinetics of a Bisphenol-A Type Vinyl-Ester Resin Using Non-Isothermal DSC

  • Ahn, WonSool (Department of Chemical Engineering, Keimyung University)
  • Received : 2017.12.12
  • Accepted : 2018.01.05
  • Published : 2018.03.31

Abstract

In the current research, the curing kinetics of a mixture system consisting of a Bisphenol-A type vinyl ester resin and styrene monomer was studied. Methylethylketone peroxide and cobalt octoate were used as the polymerization initiator and accelerator respectively. Thermograms with several different heating rates were obtained using non-isothermal differential scanning calorimetry. Activation energy values analyzed by the Flynn-Wall-Ozawa isoconversional method showed a three-step change with conversion ${\alpha}$: a slight decrease initially for ${\alpha}$ < 0.1, a constant value of 47.9 kJ/mol in the range 0.1 < ${\alpha}$ < 0.7, and a slow increase for 0.7 < ${\alpha}$. When assuming a constant activation energy of 47.9 kJ/mol, an autocatalytic model of the Sestak-Berggren equation was considered as the proper mathematical model of the conversion function, indicating an overall order of 1.2.

Keywords

References

  1. D. R. Ashland, P. P. Fulay, and W. J. Wright, "Composites" in The Science and Engineering of Materials, 6th ed., Cengage Learning, Ch. 17 (2010).
  2. T. Black and R. Kosher, "Non-Metallic Materials: Plastic, Elastomers, Ceramics and Composites", in Materials and Processing in Manufacturing, 10th ed., John Wiley & Sons, Inc., USA, 162 (2008).
  3. F. Mathews and R. Rawlings, "Polymer Matrix Composite", in Composite Materials: Engineering and Sciences, The Alden Press, Oxford, UK, 168 (1994).
  4. M. Tuttle, "Introduction" in Structural analysis of Polymeric Composite Materials, U. Washington, USA, 1 (2004).
  5. W. D. Cook, G. P. Simon, P. J. Burchill, M. Lau, and T. J. Fitch, "Curing Kinetics and Thermal Properties of Vinyl Ester Resins", J. Appl. Polym. Sci., 64, 769 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<769::AID-APP16>3.0.CO;2-P
  6. G. R. Palmese, O. A. Andersen, and V. M. Karbhari, "Effect of Glass Fiber Sizing on the Cure Kinetics of Vinyl-Ester Resins", Composites: Part A, 30, 11 (1999). https://doi.org/10.1016/S1359-835X(98)00108-0
  7. A. Mousa and J. Karger-Kocsis, "Cure Characteristics of a Vinyl Eester Resin as Assessed by FTIR and DSC Techniques", Polymers & Polymer Composites, 8, 455 (2000).
  8. M. L. Auad, M. I. Aranguren, G. Elicabe, and J. Borrajo, "Curing kinetics of divinyl ester resins with styrene", J. Appl. Polym. Sci., 74, 1044 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1044::AID-APP2>3.0.CO;2-Q
  9. R. P. Brill and G. R. Palmese, "An investigation of vinyl-ester styrene bulk copolymerization cure kinetics using Fourier transform infrared spectroscopy", J. Appl. Polym. Sci., 76, 1572 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000606)76:10<1572::AID-APP12>3.0.CO;2-C
  10. S. Ziaee and G. R. Palmese, "Effects of Temperature on Cure Kinetics and Mechanical Properties of Vinyl-Ester Resins", J. Polym. Sci., Part B: Polymer Physics, 37, 725 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990401)37:7<725::AID-POLB23>3.0.CO;2-E
  11. T. Ozawa, "Kinetics of non-isothermal crystallization", Polymer, 12, 150 (1971). https://doi.org/10.1016/0032-3861(71)90041-3
  12. T. Ozawa, "Non-isothermal kinetics and generalized time", Thermochim. Acta, 100, 109 (1986). https://doi.org/10.1016/0040-6031(86)87053-8
  13. J. Malek, "The kinetic analysis of non-isothermal data", Thermochim. Acta, 200, 257 (1992). https://doi.org/10.1016/0040-6031(92)85118-F
  14. G. I. Senum and R. T. Yang, "Rational approximations of the integral of the Arrhenius function", J. Thermal. Anal., 11, 445 (1977). https://doi.org/10.1007/BF01903696