• Title/Summary/Keyword: non-isothermal DSC

Search Result 30, Processing Time 0.03 seconds

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

Cure Kinetics of a Bisphenol-A Type Vinyl-Ester Resin Using Non-Isothermal DSC

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In the current research, the curing kinetics of a mixture system consisting of a Bisphenol-A type vinyl ester resin and styrene monomer was studied. Methylethylketone peroxide and cobalt octoate were used as the polymerization initiator and accelerator respectively. Thermograms with several different heating rates were obtained using non-isothermal differential scanning calorimetry. Activation energy values analyzed by the Flynn-Wall-Ozawa isoconversional method showed a three-step change with conversion ${\alpha}$: a slight decrease initially for ${\alpha}$ < 0.1, a constant value of 47.9 kJ/mol in the range 0.1 < ${\alpha}$ < 0.7, and a slow increase for 0.7 < ${\alpha}$. When assuming a constant activation energy of 47.9 kJ/mol, an autocatalytic model of the Sestak-Berggren equation was considered as the proper mathematical model of the conversion function, indicating an overall order of 1.2.

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.

Non-isothermal Decomposition Kinetics of a New High-energy Organic Potassium Salt: K(DNDZ)

  • Xu, Kangzhen;Zhao, Fengqi;Song, Jirong;Ren, Xiaolei;Gao, Hongxu;Xu, Siyu;Hu, Rongzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2259-2264
    • /
    • 2009
  • A new high-energy organic potassium salt, 2-(dinitromethylene)-1,3-diazepentane potassium salt K(DNDZ), was synthesized by reacting of 2-(dinitromethylene)-1,3-diazepentane (DNDZ) and potassium hydroxide. The thermal behavior and non-isothermal decomposition kinetics of K(DNDZ) were studied with DSC, TG/DTG methods. The kinetic equation is $\frac{d{\alpha}}{dT}$ = $\frac{10^{13.92}}{\beta}$3(1 - $\alpha$[-ln(1 - $\alpha$)]$^{\frac{2}{3}}$ exp(-1.52 ${\times}\;10^5$ / RT). The critical temperature of thermal explosion of K(DNDZ) is $208.63\;{^{\circ}C}$. The specific heat capacity of K(DNDZ) was determined with a micro-DSC method, and the molar heat capacity is 224.63 J $mol^{-1}\;K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of K(DNDZ) obtained is 157.96 s.

Study on the Non-isothermal Crystallization Behavior of Polypropylene/Corn Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 비등온결정화 거동 연구)

  • Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1125-1129
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch(starch-MB) blends with different PP compositions of 90, 80, 70, and 60 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures, thermal properties and non-isothermal crystallization behavior of the PP/starch-MB blends were investigated by FT-infrared spectrometry (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The fabrication of the PP/starch-MB blend was confirmed by the existence of hydroxy group in FT-IR spectrum. There was no district change in melting temperature and melting enthalpy, and TGA curve indicates a decrease in degradation temperature with starch-MB content. The non-isothermal crystallization process was analyzed using by Avrami equation. The Avrami exponents were in the range of 2.71-3.97 for PP and 1.48-1.99 for PP/starch-MB blonds. The activation energies calculated by Kissinger method were 233 kJ/mol for PP, 484 kJ/mol for PP90, 541 kJ/mol for PP80, 553 kJ/mol for PP70, and 422 kJ/mol for PP60.

Effects of Aluminum Nanoparticles on Thermal Decomposition of Ammonium Perchlorate

  • Zhu, Yan-Li;Huang, Hao;Ren, Hui;Jiao, Qing-Jie
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.109-114
    • /
    • 2013
  • The effects of aluminum nanoparticles (AlNs) on the thermal decomposition of ammonia perchlorate (AP) were investigated by DSC, TG-DSC and DSC-TG-MS-FTIR. Addition of AlNs resulted in an increase in the temperature of the first exothermic peak of AP and a decrease in the second. The processing of non-isothermal data at various heating rates with and without AlNs was performed using Netzsch Thermokinetics. The dependence of the activation energy calculated by Friedman's isoconversional method on the conversion degree indicated the decomposition process can be divided into three steps. They were C1/D1/D1 for neat AP, determined by Multivariate Non-linear Regression, and changed to C1/D1/F2 after addition of AlNs into AP. The isothermal curves showed that the thermal stability of AP in the low temperature stage was improved in the presence of AlNs.

Crystallization Kinetics of $PbO-TiO_2-SiO_2-B_2O_3$ Glasses by DSC (DSC에 의한 $PbO-TiO_2-SiO_2-B_2O_3$계 유리의 결정화 속도)

  • 손명모;이승호;이헌수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1331-1336
    • /
    • 1995
  • The glass-ceramics for ferro-electric were made from compositions of 70PbO.16TiO2.8SiO2.4B2O3.2AlPO4 (wt%) and 67.5PbO.20TiO2.8.5SiO2.2B2O3.2AlPO4 (wt%). The crystallization kinetics for PbTiO3 crystalline phase formation from glass was studied using non-isothermal DSC techniques. The values of activation energy, ΔE using variables of heating rate and temperature were calculated at various reaction fractions obtained from peak area over DSC. The results indicated that activation energy was lowest at 60% reaction fractions and the activation energy of glass containing 20.0 wt% TiO2 is higher than that of glass containing 16.0 wt% TiO2. The crystallization mechanism was three dimensional growth (n=4).

  • PDF

An Experimental Study on Measurement of the Reaction Order of a Liquid Fuel with Various Components (혼합 액체연료의 화학반응차수 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.421-424
    • /
    • 2011
  • Thermal Analyses are conducted to measure various factors of a liquid fuel required for numerical analysis. Thermal Analyses are divided into two different methods of TGA (Thermo Gravimetric Analysis) and DSC (Differential Scanning Calorimetry). Non-isothermal experimental results are analyzed using by TGA. The results are filtered by a Freeman Carroll method. At the same time, chemical parameters of unknown liquid fuel, activation temperature and reaction order are measured to 6128.2 K and 1.4, respectively. Furthermore, the parameters can be obtained by various mathematical methods. It is found that tha parameters depend on the processing method.

  • PDF

Kinetics on the Thermal Decomposition of Cellulose (셀룰로오스의 열분해 반응속도론)

  • 최승찬;박영수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.55-62
    • /
    • 1983
  • Four of non- isothermal methods evaluating kinetics have been studied by using differential scanning calorimetry (DSC) and thermogravimetry (TG) and applied for kinetics of the thermal decomposition of cellulose. It is concluded that the heating evolution methods with DSC and approximative methods with TC can lead to satisfactory kinetic analysis. Results calculating the reacting order and the activation energy of cellulose decomposition were 1/2 order and 42kcaB/mol, respectively.

  • PDF

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.