DOI QR코드

DOI QR Code

Selection of Entomopathogenic Fungus Isaria javanica FT333 for Dual Control of Thrips and Anthracnose

총채벌레 및 고추탄저병의 동시 방제를 위한 곤충병원성 곰팡이 Isaria javanica FT333 선발

  • Lee, Moran (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Jeong, Hyeju (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Kim, Jaeyoon (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Kim, Dayeon (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Ahn, Seung Ho (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Lee, SangYeob (Agricultural Microbiology Division, National Institutes of Agricultural Science) ;
  • Han, Ji Hee (Agricultural Microbiology Division, National Institutes of Agricultural Science)
  • 이모란 (국립농업과학원 농업미생물과) ;
  • 정혜주 (국립농업과학원 농업미생물과) ;
  • 김재윤 (국립농업과학원 농업미생물과) ;
  • 김다연 (국립농업과학원 농업미생물과) ;
  • 안성호 (국립농업과학원 농업미생물과) ;
  • 이상엽 (국립농업과학원 농업미생물과) ;
  • 한지희 (국립농업과학원 농업미생물과)
  • Received : 2018.11.07
  • Accepted : 2018.11.27
  • Published : 2018.12.01

Abstract

Red pepper is seriously damaged by thrips (Thrips palmi) and anthracnose caused by Colletotrichum acutatum throughout its development. Because of biotic constraints, producers often depend on chemicals that are expensive and have adverse effects on the environment, operator, and beneficial insects. In addition, resistance is developed because of the repeated use of chemicals. In recent decades, the use of microorganisms in crop protection has become a credible alternative because it is eco-friendly. In this study, we aimed to select isolates with insecticidal and fungicidal activities against the pathogens that cause anthracnose and thrips. We treated T. palmi adults and juveniles with 13 strains of entomopathogenic fungi (isolated from the soil by using the insect-bait method), and 6 strains showed excellent insecticidal activity (70-100%) 5 days after the treatment. The selected isolates were cultured with C. acutatum to screen for the strain with excellent anti-fungal activities, among which an isolate FT333 showed more than 95% control efficacy against C. acutatum in vitro. The isolate was identified as Isaria javanica through its morphological characteristics and phylogenetic analysis of the ITS and ${\beta}-tubulin$ nucleotide sequences. The Isaria javanica FT333 isolate could be used effectively for dual bio-control of thrips and anthracnose during red pepper cultivation.

고추의 주요 병해충인 총채벌레(Thrips palmi)와 탄저병(Colletotrichum acutatum)을 방제하기 위해 다양한 화학농약이 사용되고 있지만, 농약의 오남용으로 인하여 이에 대한 저항성이 발생하여 방제가 힘들어지고 환경오염을 초래하는 문제가 있다. 그리하여 본 연구에서는 이러한 문제를 극복하고자 총채벌레에 대한 살충효과와 탄저병에 항균력이 우수한 균주를 선발하여 동시 방제의 가능성을 확인하고자 하였다. 토양으로부터 분리한 곤충병원성 곰팡이 13균주($1{\times}10^7conidia/mL$)를 오이총채벌레 성충과 약충에 처리하여 70~100%의 우수한 살충률을 나타내는 6균주를 선발하였다. 선발한 6균주의 항균활성을 검정하기 위하여 고추 탄저병균에 대치 배양한 결과, 항균력이 우수한 FT333 균주를 최종 선발할 수 있었다. 최종 선발된 균주를 형태학적 조사와 internal transcribed spacer, ${\beta}-tubulin$ 영역의 염기서열 분석을 통하여 Isaria javanica로 동정하였고, I. javanica FT333으로 명명하였다. I. javanica FT333 (KACC93316P)의 고추 탄저병균에 대한 방제 효과를 기내에서 검정한 결과($1{\times}10^5$, $1{\times}10^6$, $1{\times}10^7conidia/mL$) 95% 이상의 방제효과를 나타내었다. 이러한 결과들을 바탕으로 I. javanica FT333 균주가 고추 탄저병균과 미소해충인 오이총채벌레를 동시에 방제하기 위한 미생물제제로서 이용될 수 있는 가능성을 제시하였다.

Keywords

GNHHDL_2018_v46n4_479_f0001.png 이미지

Fig. 1. Control efficacy of first selected isolates against juvenile of thrips. Control was treated with 0.02% Tween 80 (mean ± SE). Spores were observed in the mu㎜ies after bioassay. Data were analyzed using ANOVA (p < 0.001), and the differences were further elucidated using DUNCAN’s multiple range test. Different letters indicate significant differences at p < 0.001 at each time point

GNHHDL_2018_v46n4_479_f0002.png 이미지

Fig. 2. Dual culture assay for in vitro inhibition of mycelial growth of Colletotrichum acutatum by isolates. Isolates were cultured on PDA plates at 25°C for 2 weeks. A, Control; B, FT284; C, FT285; D, FT299; E, FT304; F, FT322; G, FT333; PDA, potato dextrose agar.

GNHHDL_2018_v46n4_479_f0003.png 이미지

Fig. 3. Phylogenetic tree based on the internal transcribed spacer rDNA and partial β-tubulin gene sequences of isolate FT333 and the type strains of Isaria species. The tree was constructed using the neighbor-joining method and Kimuras two-parameter model. The percentage of replicate groupings in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown above the branches. A sequence from Metarhizitum brunneum is used as an outgroup. ARSEF, Agricultural Research Service Collection of Entomopathogenic Fungal Cultures (Ithaca, NY, USA); CBS, Central Bureauvoor Schi㎜elcultures (Utrecht, The Netherlands). Scale bar = 0.05 substitutions per nucleotide position

GNHHDL_2018_v46n4_479_f0004.png 이미지

Fig. 4. Morphology of hyphae, conidiophores, and conidia of Isaria javanica FT333 (scale bar = 100 μm)

GNHHDL_2018_v46n4_479_f0005.png 이미지

Fig. 5. Control effect by Isaria javanica FT333against Colletotrichum acutatum on red pepper at wetting treatment chamber. Anthracnose disease was observed by C. acutatum at 25°C for 2 weeks after inoculation

Table 1. Primers used in this study

GNHHDL_2018_v46n4_479_t0001.png 이미지

Table 2. Cumulative mortality of Thrips palmi treated with entomopathogenic fungi collected from soil insect-bait method

GNHHDL_2018_v46n4_479_t0002.png 이미지

Table 3. The inhibitory effects of 6 isolates against mycelial growth of Colletotrichum acutatum on PDA medium

GNHHDL_2018_v46n4_479_t0003.png 이미지

Table 4. Control effcacy of Isaria javanica FT333 against anthracnose

GNHHDL_2018_v46n4_479_t0004.png 이미지

References

  1. Babadoost M. Phytopthora blight (Phytophthora capsici) of pepper and its management. In: 2009 KSPP Fall Meeting and the 1st Japan-Korea Joint Symposium; 2009 Oct 28-31; Jeju, Korea. Seoul: Korean Society of Plant Pathology; 2009.
  2. Broughton S, Bennington JM, Cousins DA. Thrips (Thysanoptera) damage to apple and nectarines in western Australia. Crop Prot 2015;72:47-56. https://doi.org/10.1016/j.cropro.2015.02.014
  3. Hajek AE, St. Leger RJ. Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 1994;39:293-322. https://doi.org/10.1146/annurev.en.39.010194.001453
  4. Yun HG, Kim DJ, Gwak WS, Shin TY, Woo SD. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and Phytopathogen Botrytis cinerea. Mycobioloy 2017;45:192-8. https://doi.org/10.5941/MYCO.2017.45.3.192
  5. Lacey LA, Frutos R, Kaya HK, Vail P. Insect pathogens as biological control agents: Do they have a future? Biol Control 2001;21:230-48. https://doi.org/10.1006/bcon.2001.0938
  6. Charnley AK, Collins SA. Entomopathogenic fungi and their role in pest control. In: Kubicek C, Druzhinina I, editors. Environmental and microbial relationships. Berlin: Springer; 1997. p. 159-87.
  7. Supakdamrongkul P, Bhumiratana A, Wiwat C. Characterization of an extracellular lipase from the biocontrol fungus, Nomuraea rileyi MJ, and its toxicity toward Spodoptera litura. J Invertebr Pathol 2010;105:228-35. https://doi.org/10.1016/j.jip.2010.06.011
  8. Han JH, Kim H, Leem HT, Kim JJ, Lee SY. Characteristics and virulence assay of entomopathogenic fungus Metarhizium anisopliae for the microbial control of Spodoptera exigua. Korean J Pestic Sci 2013;17:454-9. https://doi.org/10.7585/kjps.2013.17.4.454
  9. Dunlap CA, Mascarin GM, Romagnoli EM, Jackson MA. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays. J Invertebr Pathol 2017;150:88-93. https://doi.org/10.1016/j.jip.2017.09.011
  10. Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Wutikhun T, Spatafora JW, Luangsa-Ard J. Disentangling cryptic species with Isaria-like morphs in Cordycipitaceae. Mycologia 2018;110:230-57.
  11. O'Dnenell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 1997;7:103-16. https://doi.org/10.1006/mpev.1996.0376
  12. Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosorosea following ionizing radiation-induced mutagenesis. FEMS Microbiol Lett 2013;349:54-60.
  13. Bena G, Jubier MF, Olivieri I I, Lejeune B. Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). J Mol Evol 1998;46:299-306. https://doi.org/10.1007/PL00006306
  14. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 2015;132:1-41. https://doi.org/10.1016/j.jip.2015.07.009
  15. Han MJ, Kim IS, Ahn SB, Lee ML, Hong KJ, Lee GH, Ku DS. Distribution and host plants of recently introduced western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Korea. RDA J Crop Protec 1998;40:83-88.
  16. Hong KJ, Lee ML, Han MJ, Ahn SB, Kim IS, Lee GH, Ku DS. Distribution and host plants of recently introduced palm thrips, Thrips palmi Karny (Thysanoptera:Thripidae) in Korea. RDA J Crop Protec 1998;40:89-95.
  17. Chung BK. Analysis of damaged by Frankliniella occid-entalis (Thysanoptera: Thripidae) in eggplants. J Asia Pac Entomol 2001;4:149-55. https://doi.org/10.1016/S1226-8615(08)60116-8
  18. Lee GH, Paik CH, Hwang CY, Choi MY, Kim DH, Na SY, Kim SS, Choi IH. Effect of host plants on the development and reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Korean J Appl Entomol 2003;42:301-5.
  19. Ekesi S, Maniania NK, Ampong-Nyarko K, Onu I. Potential of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorokin for control of the legume flower thrips, Megalurothrips sjostedti (Ikybom) on cowpea in Kenya. Crop Prot 1998;17:661-8. https://doi.org/10.1016/S0261-2194(98)00069-6
  20. Wraight SP, Ugine TA, Ramos ME, Sanderson JP. Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions. Biol Control 2016;97:31-47. https://doi.org/10.1016/j.biocontrol.2016.02.016
  21. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 2007;43:237-56. https://doi.org/10.1016/j.biocontrol.2007.08.001
  22. Kang HS, Kang JG, Park JC, Lee YU, Joeng YW, Kim JJ, Park CS. Development of biofungicide using Bacillus sp. KBC1004 for the control of anthracnose of red pepper. Res Plant Dis 2015;21:208-14. https://doi.org/10.5423/RPD.2015.21.3.208