References
- Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
- Dean R, Van Kan JA, Pretorius ZA, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13:414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
- Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Micro. 2009;7:185-195. https://doi.org/10.1038/nrmicro2032
- Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50:491-512. https://doi.org/10.1146/annurev.micro.50.1.491
- Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell. 2007;19:706-724. https://doi.org/10.1105/tpc.106.046300
- Gladieux P, Condon B, Ravel S, et al. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio. 2018;9:e01219-17.
- Xue M, Yang J, Li Z, et al. Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet. 2012;8:e1002869. https://doi.org/10.1371/journal.pgen.1002869
- Urban M, Cuzick A, Rutherford K, et al. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database. Nucleic Acids Res. 2017;45:D604-DD10. https://doi.org/10.1093/nar/gkw1089
- Urban M, Irvine AG, Cuzick A, et al. Using the pathogen-host interactions database (PHI-base) to investigate plant pathogen genomes and genes implicated in virulence. Front Plant Sci. 2015;6:605.
- Domazet-Loso T, Brajkovic J, Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23:533-539. https://doi.org/10.1016/j.tig.2007.08.014
- Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14:117 https://doi.org/10.1186/1471-2164-14-117
- Domazet-Loso T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8:66 https://doi.org/10.1186/1741-7007-8-66
- Moyers BA, Zhang J. Evaluating phylostratigraphic evidence for widespread De Novo gene birth in genome evolution. Mol Biol Evol. 2016;33:1245-1256. https://doi.org/10.1093/molbev/msw008
- Sipos G, Prasanna AN, Walter MC, et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol. 2017;1:1931-1941. https://doi.org/10.1038/s41559-017-0347-8
- Conant GC, Wolfe KH. Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet. 2008;9:938-950. https://doi.org/10.1038/nrg2482
- Tautz D, Domazet-Loso T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12:692-702.
- Domazet-Loso T, Tautz D. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 2003;13:2213-2219. https://doi.org/10.1101/gr.1311003
- Grigoriev IV, Nikitin R, Haridas S, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucl Acids Res. 2014;42:D699-D704. https://doi.org/10.1093/nar/gkt1183
- Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8-D13. https://doi.org/10.1093/nar/gkx1095
- Team RC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.
- Jeon J, Choi J, Lee GW, et al. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus. Magnaporthe oryzae. Sci Rep. 2015;5:8567. https://doi.org/10.1038/srep08567
- Choi J, Park J, Kim D, et al. Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics. 2010;11:105. https://doi.org/10.1186/1471-2164-11-105
- Alba MM, Castresana J. On homology searches by protein blast and the characterization of the age of genes. BMC Evol Biol. 2007;7:53 https://doi.org/10.1186/1471-2148-7-53
- Postberg J, Forcob S, Chang WJ, et al. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms. BMC Evol Biol. 2010;10:259. https://doi.org/10.1186/1471-2148-10-259
- Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev. 2008;32:409-439. https://doi.org/10.1111/j.1574-6976.2007.00100.x
- Chi MH, Park SY, Kim S, et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 2009;5:e1000401 https://doi.org/10.1371/journal.ppat.1000401
- Okagaki LH, Nunes CC, Sailsbery J, et al. Genome sequences of three phytopathogenic species of the Magnaporthaceae family of fungi. G3 (Bethesda). 2015;5:2539-2545.
- Sadat A, Jeon J, Mir AA, et al. Analysis of in planta expressed orphan genes in the rice blast fungus Magnaporthe oryzae. Plant Pathol J. 2014;30:367-374. https://doi.org/10.5423/PPJ.OA.08.2014.0072
- Park J, Park B, Jung K, et al. CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res. 2007;36:D562-D571. https://doi.org/10.1093/nar/gkm758
- Kim KT, Jeon J, Choi J, et al. Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci. 2016;7:186.
- Fox JM, Erill I. Relative codon adaptation: a generic codon bias index for prediction of gene expression. DNA Res. 2010;17:185-196. https://doi.org/10.1093/dnares/dsq012
- Jeon J, Park SY, Chi MH, et al. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet. 2007;39:561-565. https://doi.org/10.1038/ng2002
- Franck WL, Gokce E, Oh Y, et al. Temporal analysis of the Magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics. 2013;12:2249-2265. https://doi.org/10.1074/mcp.M112.025874
- Gokce E, Franck WL, Oh Y, et al. In-depth analysis of the Magnaporthe oryzae conidial proteome. J Proteome Res. 2012;11:5827-5835. https://doi.org/10.1021/pr300604s
- Kim ST, Yu S, Kim SG, et al. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics. 2004;4:3579-3587. https://doi.org/10.1002/pmic.200400969
- Bhadauria V, Wang LX, Peng YL. Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1. Biol Direct. 2010;5:61. https://doi.org/10.1186/1745-6150-5-61
Cited by
- De novo Prediction of Moonlighting Proteins Using Multimodal Deep Ensemble Learning vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.630379