References
- Arnolds E. Einige Pilze eines Halbtrockenrasen bei Detmold (Westfalen). Westfal Pilzbriefe. 1977;11:29-39.
- Ripkova S, Adamcik S, Kucera V. Flammulina ononidis - a new species for Slovakia. Czech Mycol. 2008;60:221-230. https://doi.org/10.33585/cmy.60206
- Łuszczynski J, Łuszczynska B, Tomaszewska A. Flammulina ononidis - first record in Poland. Acta Mycol. 2014;49:79-85. https://doi.org/10.5586/am.2014.007
- Ripkova S, Hughes K, Adamcik S, et al. The delimitation of Flammulina fennae. Mycol Progress. 2010;9:469-484. https://doi.org/10.1007/s11557-009-0654-9
- Hughes KW, McGhee LL, Methven AS, et al. Patterns of geographic speciation in the genus Flammulina based on sequences of the ribosomal ITS1-5.8S-ITS2 area. Mycologia. 1999;91:978-986. https://doi.org/10.1080/00275514.1999.12061107
- Psurtseva NV. Culture of Flammulina velutipes (Fr.) P.Karst. (biology and economic importance. Mikol. i Fitopatol. l987;21:477-486.
- Klan J, Baudisova D. Cultural, enzyme and genetic studies in the genus Flammulina Karst. Mycotaxon. 1992;43:341-350.
- Nobles MJ. Identification of cultures of wood inhabiting Hymenomycetes. Can J Bot. 1965;26:281-413.
- Marr CD. Laccase and peroxidase oxidation of spot test reagents. Mycotaxon. 1979;9:244-276.
- Alekhina I, Psurtseva N, Yli-Mattila T. Isozyme analysis of LE(BIN) Collection Flammulina strains. Karstenia. 2001;41:55-63. https://doi.org/10.29203/ka.2001.379
- Psurtseva NY, Mnoukhina AY. Morphological, physiological and enzyme variability of Flammulina P. Karst. cultures. Mikol i Fitopatol. 1998;32:49-54.
- Perez-Butron JL, Ferdnandez-Vicente J. Una nueva especie de Flammulina P. Karsten, F. cephalariae (Agaricales) encontrada en Espa-na. Rev Catalana Micol. 2007;29:81-91.
- Eriksson K, Blanchette RA, Ander P. Microbial and enzymatic degradation of wood and wood components. Berlin, Germany: Springer-Verlag; 1990.
- Rytioja J, Hilden K, Yuzon J, et al. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev. 2014;78:614-649. https://doi.org/10.1128/MMBR.00035-14
- Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490-D495. https://doi.org/10.1093/nar/gkt1178
- Park YJ, Baek JH, Lee S, et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One. 2014;9:e93560. https://doi.org/10.1371/journal.pone.0093560
- Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821-829. https://doi.org/10.1101/gr.074492.107
- Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:W465-W467. https://doi.org/10.1093/nar/gki458
- Buchfink B, Xie C, Huson D. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59-60. https://doi.org/10.1038/nmeth.3176
- Finn RD, Coggill P, Eberhardt R, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279-D285. https://doi.org/10.1093/nar/gkv1344
- Emms D, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. https://doi.org/10.1186/s13059-015-0721-2
- Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105-1115. https://doi.org/10.1038/nature04341
- Staats M, van Kan JA. Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell. 2012;11:1413-1414. https://doi.org/10.1128/EC.00164-12
- Morin E, Kohler A, Baker AR, et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA. 2012;109:17501-17506. https://doi.org/10.1073/pnas.1206847109
- Stajich JE, Wilke SK, Ahren D, et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA. 2010;107:11889-11894. https://doi.org/10.1073/pnas.1003391107
- Zheng P, Xia Y, Xiao G, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 2011;12:R116. https://doi.org/10.1186/gb-2011-12-11-r116
- Janbon G, Ormerod K, Paulet D, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLOS Genet. 2014;10:e1004261. https://doi.org/10.1371/journal.pgen.1004261
- Martin F, Aerts A, Ahren D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88-92. https://doi.org/10.1038/nature06556
- Chen L, Gong Y, Cai Y, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PloS One. 2016;11:e0160336. https://doi.org/10.1371/journal.pone.0160336
- Galagan JE, Calvo SE, Borkovich KA, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422:859-868. https://doi.org/10.1038/nature01554
- Martinez D, Larrondo LF, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol. 2004;22:695-700. https://doi.org/10.1038/nbt967
- Fisk DG, Ball CA, Dolinski K, et al. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast. 2006;23:857-865. https://doi.org/10.1002/yea.1400
- Ohm RA, De Jong JF, Lugones L, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28:957-963. https://doi.org/10.1038/nbt.1643
- Li WC, Huang CH, Chen CL, et al. Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels. 2017;10:170. https://doi.org/10.1186/s13068-017-0825-x
- Kamper J, Kahmann R, Bolker M, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444:97-101. https://doi.org/10.1038/nature05248
- Yin Y, Mao X, Yang JC, et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445-W451. https://doi.org/10.1093/nar/gks479
- Breton C, Snajdrova L, Jeanneau C, et al. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R-37R. https://doi.org/10.1093/glycob/cwj016
- Lairson LL, Henrissat B, Davies GJ, et al. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521-555. https://doi.org/10.1146/annurev.biochem.76.061005.092322
- Coutinho PM, Deleury E, Davies GJ, et al. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol. 2003;328:307-317. https://doi.org/10.1016/S0022-2836(03)00307-3
- Campbell JA, Davies GJ, Bulone V, et al. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929-939. https://doi.org/10.1042/bj3260929u
- Mukai Y, Hirokawa T, Tomii K, et al. Identification of glycosyltransferases focusing on Golgi transmembrane region. Tigg. 2007;19:41-47. https://doi.org/10.4052/tigg.19.41
- Berlemont R, Martiny AC. Glycoside hydrolases across environmental microbial communities. PLoS Comput Biol. 2016;12:e1005300. https://doi.org/10.1371/journal.pcbi.1005300
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309-316. https://doi.org/10.1042/bj2800309
- Hahn M, Olsen O, Politz O, et al. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase. J Biol Chem. 1995;270:3081-3088. https://doi.org/10.1074/jbc.270.7.3081
- Masuda S, Endo K, Koizumi N, et al. Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles. 2006;10:251-255. https://doi.org/10.1007/s00792-006-0514-3
- Kotake T, Hirata N, Degi Y, et al. Endo-beta-1,3-galactanase from winter mushroom Flammulina velutipes. J Biol Chem. 2011;286:27848-27854. https://doi.org/10.1074/jbc.M111.251736
- Berlemont R. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep. 2017;7:222. https://doi.org/10.1038/s41598-017-00258-w
- Sutherland IW. Polysaccharide lyases. FEMS Microbiol Rev. 1995;16:323-347. https://doi.org/10.1111/j.1574-6976.1995.tb00179.x
- Yip VL, Withers SG. Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol. 2006;10:147-155. https://doi.org/10.1016/j.cbpa.2006.02.005
- van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91:1477-1492. https://doi.org/10.1007/s00253-011-3473-2
- Garron ML, Cygler M. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology. 2010;20:1547-1573. https://doi.org/10.1093/glycob/cwq122
- Linhardt RJ, Galliher PM, Cooney CL. Polysaccharide lyases. Appl Biochem Biotechnol. 1986;12:135-176.
- Xavier-Santos S, Carvalho CC, Bonfa M, et al. Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. Folia Microbiol. 2004;49:46-52. https://doi.org/10.1007/BF02931645
- Boraston AB, Bolam DN, Gilbert HJ, et al. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769-781. https://doi.org/10.1042/BJ20040892
- Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70:283-295. https://doi.org/10.1128/MMBR.00028-05
- Varnai A, Makela MR, Djajadi DT, et al. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol. 2014;88:103-165.
- Bornscheuer UT. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev. 2002;26:73-81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x
- Jaeger KE, Eggert T. Lipases for biotechnology. Curr Opin Biotechnol. 2002;13:390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
- Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233-D238. https://doi.org/10.1093/nar/gkn663
- Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv. 2012;30:1575-1588. https://doi.org/10.1016/j.biotechadv.2012.04.010
- Adesioye FA, Makhalanyane TP, Biely P, et al. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol. 2016;93-94:79-91. https://doi.org/10.1016/j.enzmictec.2016.07.001
- Wei Y, Schottel JL, Derewenda U, et al. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat Struct Biol. 1995;2:218-223. https://doi.org/10.1038/nsb0395-218
- Petersen EI, Valinger G, Solkner B, et al. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol. 2001;89:11-25. https://doi.org/10.1016/S0168-1656(01)00284-X
- Christov LP, Prior BA. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microb Technol. 1993;15:460-475. https://doi.org/10.1016/0141-0229(93)90078-G
- Levasseur A, Drula E, Lombard V, et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6:41. https://doi.org/10.1186/1754-6834-6-41
- Reiss R, Ihssen J, Richter M, et al. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PloS One. 2013;8:e65633. https://doi.org/10.1371/journal.pone.0065633
- Fernandez IS, Ruiz-Duenas FJ, Santillana E, et al. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr D Biol Crystallogr. 2009;65:1196-1205. https://doi.org/10.1107/S0907444909035860
- Varela E, Jesus Martinez M, Martinez AT, Arylalcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases. Biochem Biophys Acta Protein Struct Mol Enzymol. 2000;1481:202-208. https://doi.org/10.1016/S0167-4838(00)00127-8
- Wierenga RK, Drenth J, Schulz GE, et al. Comparison of the 3-dimensional protein and nucleotide structure of the FAD-binding domain of parahydroxybenzoate hydroxylase with the FAD-binding as well as NADPH-binding domains of glutathionereductase. J Mol Biol. 1983;167:725-739. https://doi.org/10.1016/S0022-2836(83)80106-5
- Fernandez-Fueyo E, Ruiz-Duenas FJ, Ferreira P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA. 2012;109:5458-5463. https://doi.org/10.1073/pnas.1119912109
- Martinez AT, Ruiz-Due-nas FJ, Martinez MJ, et al. Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol. 2009;20:348-357. https://doi.org/10.1016/j.copbio.2009.05.002
- Ruiz-Due-nas FJ, Martinez AT. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol. 2009;2:164-177. https://doi.org/10.1111/j.1751-7915.2008.00078.x
- Henrissat B, Claeyssens M, Tomme P, et al. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989;81:83-95. https://doi.org/10.1016/0378-1119(89)90339-9
- The CAZypedia Consortium. Ten years of CAZypedia: a living encyclopedia of carbohydrateactive enzymes. Glycobiology. 2018;28:3-8. https://doi.org/10.1093/glycob/cwx089
- Berlemont R, Martiny AC. Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol. 2013;79:1545-1554. https://doi.org/10.1128/AEM.03305-12
- Berlemont R, Martiny AC. Genomic potential for polysaccharides deconstruction in bacteria. Appl Environ Microbiol. 2015;81:1513-1519. https://doi.org/10.1128/AEM.03718-14
- Talamantes D, Biabini N, Dang H, et al. Natural diversity of cellulases, xylanases, and chitinases in bacteria. Biotechnol Biofuels. 2016;9:133. https://doi.org/10.1186/s13068-016-0538-6
- Eichlerova I, Homolka L, Zifcakova L, et al. Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 2015;13:10-22. https://doi.org/10.1016/j.funeco.2014.08.002
- Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243-262. https://doi.org/10.1128/MMBR.00001-15
- Zhao Z, Liu H, Wang C, et al. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14:274. https://doi.org/10.1186/1471-2164-14-274
Cited by
- Genomic Insights into the Fungal Lignocellulolytic Machinery of Flammulina rossica vol.7, pp.10, 2019, https://doi.org/10.3390/microorganisms7100421
- Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-61907-1
- Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community vol.20, pp.1, 2018, https://doi.org/10.1186/s12866-020-01993-3
- Comparative Analysis of Carbohydrate Active Enzymes in the Flammulina velutipes var. lupinicola Genome vol.9, pp.1, 2018, https://doi.org/10.3390/microorganisms9010020
- In Vitro Secretome Analysis Suggests Differential Pathogenic Mechanisms between Fusarium oxysporum f. sp. cubense Race 1 and Race 4 vol.11, pp.9, 2021, https://doi.org/10.3390/biom11091353