DOI QR코드

DOI QR Code

Probabilistic Performance Evaluation Technique for Mixed-criticality Scheduling with Task-level Criticality-mode

작업별 중요도 모드를 적용한 혼합 중요도 스케줄링에서 확률적 성능 평가 기법

  • Lee, Jaewoo (Department of Industrial Security, Chung-Ang University)
  • Received : 2018.06.29
  • Accepted : 2018.08.20
  • Published : 2018.08.31

Abstract

Mixed-criticality systems consist of components with different criticality. Recently, components are categorized depending on criticality by ISO 26262 standard and DO-178B standard in automotive and avionic domain. Existing mixed-criticality system research achieved efficient and safe scheduling through system-level criticality mode. The drawback of these approaches is performance degradation of low-criticality tasks on high-criticality mode. Task-level criticality mode is one method to address the problem and improve the performance of low-critical tasks. In this paper, we propose probabilistic performance metric for the approach. In simulation results with probabilistic performance metric, we showed that our approach has better performance than the existing approaches.

혼합 중요도 시스템은 중요도가 다른 컴포넌트의 조합으로 이루어져 있다. 최근 자동차 시스템과 항공기 시스템에서 사용되는 ISO 26262와 DO-178B 표준에서는 컴포넌트를 중요도에 따라 분류하고 있다. 기존 혼합 중요도 시스템 연구에서는 시스템 모드를 통해서, 효율적이면서 안전한 스케줄링을 추구했다. 이러한 연구의 단점은 고중요도 모드에서 저중요도 작업의 성능저하이다. 이러한 문제를 개선하고자 작업별 중요도 모드를 도입하여 저중요도 작업의 성능을 개선하고 확률적 성능 지표를 설계했다. 시뮬레이션을 통해서 기존 연구 대비 성능 향상 효과를 보였다.

Keywords

KJGRBH_2018_v23n3_1_f0001.png 이미지

Task Model

KJGRBH_2018_v23n3_1_f0002.png 이미지

Schedulability

KJGRBH_2018_v23n3_1_f0003.png 이미지

EDR with Ub = 0.8

KJGRBH_2018_v23n3_1_f0004.png 이미지

EDR with Ub=0.9

KJGRBH_2018_v23n3_1_f0005.png 이미지

EDR with Ub=0.8(log scale)

KJGRBH_2018_v23n3_1_f0006.png 이미지

EDR with Ub=0.9(log scale)

References

  1. Baruah, S., Bonifaci, V., Angelo, G. D., Li, H., Marchetti-Spaccamela, A., Van der Ster, S., and Stougie, L., "The Preemptive Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline Sporadic Task Systems," In the proceeding of Euromiro Conference on Real-Time Systems (ECRTS), 2012.
  2. Baruah, S., Burns, A., and Davis, R., "Response-Time Analysis for Mixed Criticality Systems," In the proceeding of Real- Time Systems Symposium (RTSS), 2011.
  3. Bate, I., Burns, A., and Davis, R. I., "A Bailout Protocol for Mixed Criticality Systems," In the proceeding of Euromiro Conference on Real-Time Systems (ECRTS), 2015.
  4. Burns, A. and Davis, R., Mixed Criticality Systems-A Review, the tenth edition, Technical Report in University of York, 2018,
  5. Chong, K.-W., Kim, J.-C., Kim, J.-I., and Lee, W.-J., "A System for Analyzing Data Transmission Time in Ubiquitous Sensor Network," The Journal of Society for e-Business Studies, Vol. 13, No. 2, pp. 149-163, 2008.
  6. Huang, P., Kumar, P., Stoimenov, N., and Thiele, L., "Interference constraint graph -A new specification for mixed criticality systems," In the proceedings of Emerging Technologies and Factory Automation(ETFA), 2013.
  7. Lee, J. W., Chwa, H. S., Phan, L. T. X., Shin, I. S., and Lee, I. S., "MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling," ACM Trans. Embed. Comput. Syst., Vol. 16, No. 5s, pp. 1-21, 2017.
  8. Santy, F., George, L., Thierry, P., and Goossens, J., "Relaxing Mixed-Criticality Scheduling Strictness for Task Sets Scheduled with FP," In the proceeding of Euromiro Conference on Real-Time Systems (ECRTS), 2012.
  9. Vestal, S., "Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance," In the proceeding of Real-Time Systems Symposium (RTSS), 2007.
  10. Yoon, S.-H., "Minimizing the Total Stretch when Scheduling Flows of Divisible Requests without Interruption," The Journal of Society for e-Business Studies, Vol. 20, No. 1, pp. 79-88, 2015. https://doi.org/10.7838/jsebs.2015.20.1.079