DOI QR코드

DOI QR Code

한국의 주요 블루베리 품종의 항산화 활성 및 페놀화합물 함량 분석

Antioxidant activity and content of phenolic compounds in fruits of mainly cultivated blueberries in Korea

  • 권순은 (영남대학교 원예생명과학과) ;
  • 안순영 (영남대학교 원예생명과학과) ;
  • 윤해근 (영남대학교 원예생명과학과)
  • Kwon, Soon Eun (Department of Horticulture and Life Science, Yeungnam University) ;
  • Ahn, Soon Young (Department of Horticulture and Life Science, Yeungnam University) ;
  • Yun, Hae Keun (Department of Horticulture and Life Science, Yeungnam University)
  • 투고 : 2018.09.27
  • 심사 : 2018.11.09
  • 발행 : 2018.12.31

초록

블루베리 10품종의 과실특성으로는 과립중은 0.83 ~ 1.88 g의 범위를 나타냈으며, '넬슨'이 가장 큰 과실을 결실하였으며 '블루골드'의 과실이 0.83 g으로 가장 작았다. 당도는 '시에라'에서 $16.6^{\circ}Brix$로 가장 높았고, $9.7-16.6^{\circ}Brix$를 나타내었다. 산함량은 '브리지타'에서 1.75%로 가장 높았고, '선라이즈'에서 0.94%로 가장 낮았다. 총 페놀 함량은 '노스블루'($23.75mg\;GAE{\cdot}g^{-1}\;FW$)에서 가장 높았고, '코빌'($17.15mg\;GAE{\cdot}g^{-1}\;FW$)에서 가장 낮았다. 총 플라보노이드 함량은 '넬슨'($14.1mg\;QE{\cdot}g^{-1}\;FW$)에서 가장 높았고, '듀크'에서는 $10.1mg\;QE{\cdot}g^{-1}\;FW$으로 가장 낮았다. 블루베리 추출물의 항산화활성을 3종류의 방법으로 조사한 결과, $ABTS^+$ radical 소거능은 '란코카스'(82.2%), '블루골드'(79.6%), '넬슨'(77.8%) 등에서 높았으며, DPPH radical 소거능은 '란코카스'(76.0%)에서 가장 높았으나, hydroxy radical 소거능은 '넬슨'(73.0%)에서 가장 높았다. 총 페놀 및 플라보노이드 함량, 항산화활성 등의 특성을 수치화하여 다변량 해석을 수행한 결과, 'Bluegold', 'Nelson', 'Northblue', 'Rancocas'등의 품종이 기능성 특성이 가장 양호하여 블루베리 품종 육성을 위한 육종 소재로 활용될 수 있을 것으로 여겨진다.

Fruits of 10 cultivars ('Blue Gold', 'Brigitta', 'Coville', 'Duke', 'Nelson', 'North Blue', 'Rancocas', 'Sierra', Sunrise, and 'Weymouth') of blueberries (Vaccinum corymbosun) were analyzed for characteristics, contents of total phenolic compounds and flavonoids and antioxidant activity in this study. Fruit weights ranged from 0.83 to 1.88 g. Total soluble solids concentration varied from 9.7 in 'Duke' to $16.6^{\circ}Brix$ in 'Sierra' with titratable acidities of 0.94 % in 'Sunrise' and 1.75% in 'Brigitta'. There are relatively high contents in 'North Blue' ($23.75mg\;GAE{\cdot}g^{-1}\;FW$) and low contents in 'Coville' ($17.15mg\;GAE{\cdot}g^{-1}\;FW$) in total phenolic compounds. Contents of total phenolic compounds were high in 'Nelson'($14.1mg\;QE{\cdot}g^{-1}\;FW$) and low in 'Duke' ($10.1mg\;QE{\cdot}g^{-1}\;FW$). Analysis of antioxidant activity of blueberry fruits showed that there were high acitiviites of ABTS+ radical scavenging in 'Rancoccas' (82.2%), 'Bluegold' (79.6%), and 'Nelson' (77.8%), and high activities of DPPH radical scavenging in 'Rancocca' (76.0%), and high in hydroxy radical scavenging in 'Nelson' (73.0%). Quantification analysis method of qualitative data showed that 'Bluegold', 'Nelson', 'Northblue', and 'Rancocas' had high contents of phenol and flavonoid compounds, and activity antioxidants of berries. Blueberry cultivars selected by statistical quantification analysis can be utilized as valuable genetic resources for breeding of blueberry with high antioxidant activities in the future.

키워드

참고문헌

  1. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200 https://doi.org/10.1038/1811199a0
  2. Borges G, Degeneve A, Mullen W, Crozier A (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem 58:3901-3909 https://doi.org/10.1021/jf902263n
  3. Brazelton C (2013) World Blueberry Acreage & Production. North American blueberry council
  4. Burdulis D, Sarkinas A, Jasutien I, Stackevicen E, Nikolajevas L, Janulis V (2009) Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Drug Res 66:399-408
  5. Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, Castranova V, Jiang BH, Shi X (2006) Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281:17359-17368 https://doi.org/10.1074/jbc.M600861200
  6. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, $ABTS^+$, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768-1774 https://doi.org/10.1021/jf803011r
  7. Folin O, Denis W (1915). A colorimetric method for determination of phenols (phenol derivatives) in urine. J Biol Chem 22:305-308
  8. Giovanelli G, Brambilla A, Rizzolo A, Sinelli N (2012) Effects of blanching pre-treatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.) Food Res Int 49:263-271 https://doi.org/10.1016/j.foodres.2012.08.015
  9. Giovanelli G, Brambilla A, Sinelli N (2013) Effects of osmo-air dehydration treatments on chemical, antioxidant and morphological characteristics of blueberries. LWT Food Sci Technol 54:577-584 https://doi.org/10.1016/j.lwt.2013.06.008
  10. Gough RE (1994) The highbush blueberry and its management. Food Products Press, New York 137-149
  11. Gunduz K, Serce S, Hancock JF (2015) Variation among highbush and rabbiteye cultivars of blueberry for fruit quality and phytochemical characteristics. J Food Compos Anal 38:69-79 https://doi.org/10.1016/j.jfca.2014.09.007
  12. Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Anderson SU, Brown A, Lila MA, Loraine AE (2015) RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. Giga Science 4:5 https://doi.org/10.1186/s13742-015-0046-9
  13. Gutteridge JMC (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Neurobiol NO OH 738:201-213
  14. Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274-2279 https://doi.org/10.1021/jf9811065
  15. Huang W, Zhang H, Liu W, Li C (2012) Survey of antioxidant capacity and phenolic composition of bleberry, blackberry, and strawberry in Nanjing. J Zhejiang-SCI B 13:94-102 https://doi.org/10.1631/jzus.B1100137
  16. Kalt W, Ryan DA, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet SP (2001) Interspecific variation in anthocyanins, phenolic, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium Section cyanococcus spp.). J Agric Food Chem 49:4761-4767 https://doi.org/10.1021/jf010653e
  17. Kalt W, Foote K, Fillmore SAE, Lyon M, van Lunen TA, McRae KB (2008) Effect of blueberry feeding on plasma lipids in pigs. Brazilian J Nutr 100:70-78 https://doi.org/10.1017/S0007114507877658
  18. Kim JG and HK Yun (2015) Current status and prospects of blueberry genomics research. J Plant Biotechnol 42:336-341 https://doi.org/10.5010/JPB.2015.42.4.336
  19. Kim JG, Kim HL, Kim SJ, Park KS (2013) Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea. J Zhejiang Univ Sci B 14:793-799 https://doi.org/10.1631/jzus.B1300012
  20. Koca I, Karadeniz B (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci Hortic 121:447-450 https://doi.org/10.1016/j.scienta.2009.03.015
  21. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, Joseph JA (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58:3996-4000 https://doi.org/10.1021/jf9029332
  22. Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54-61 https://doi.org/10.1016/j.gene.2012.09.021
  23. Li D, Li B, Ma Y, Sun X, Lin Y, Meng X (2017) Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J Food Compos Anal 62:84-93 https://doi.org/10.1016/j.jfca.2017.03.006
  24. Lobos GA, Hancock JF (2015) Breeding blueberries for a changing global environment: a review. Front Plant Sci 6:782
  25. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthrophamacol 71:109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  26. Mudd AB, White EJ, Bolloskis MP, Kapur NP, Everhart KW, Lin Y-C, Brown RH (2013) Students’ perspective on genomics:from sample to sequence using the case study of blueberry. Front Genet 4:245
  27. Nguyen TT, Kim JY, Yoo KS, Lim SY, and Lee EJ. 2014. Effect of prestorage UV-A, -B, and -C radiation on fruit quality and anthocyanin of ‘Duke’ blueberries during cold storage. J Agric Food Chem 62:12144-12151 https://doi.org/10.1021/jf504366x
  28. Pertuzatti PB, Barcia MT, Rodrigues D, da Cruz PN, Hermosin-Gutierrez I, Smith R, Godoy HT (2014) Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chem 164:81-88 https://doi.org/10.1016/j.foodchem.2014.04.114
  29. Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF (2001) Identification of procyanidins and anthocyanins in blueberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49:1270-1276 https://doi.org/10.1021/jf001211q
  30. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS+ radical cation decolorization assay. Free Radic Biol Med 26:1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  31. Ribera AE, Reyes-Diaz M, Alberdi M, Zuniga GE, Mora ML (2010) Antioxidant compounds in blueberry fruits from southern Chile. J Soil Sci Plant Nutr 10:509-536 https://doi.org/10.4067/S0718-95162010000200010
  32. Rodarte Castrejon AD, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:567-572
  33. Rowland L, Alkharouf N, Darwish O, Ogden E, Polashock J, Bassil N, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46 https://doi.org/10.1186/1471-2229-12-46
  34. Shaughnessy KS, Boswall IA, Scanlan AP, Gottschall-Pass KT, Sweeney MI (2009) Diets containing blueberry extract lower blood pressure in spontaneously hypertensive stroke-prone rats. Nutr Res 29:130-138 https://doi.org/10.1016/j.nutres.2009.01.001
  35. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16:24673-706 https://doi.org/10.3390/ijms161024673
  36. Srivastava A, Akoh CC, Fischer J, Krewer G (2007) Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes. J Agric Food Chem 55:3180-3185 https://doi.org/10.1021/jf062915o
  37. Strik B, Buller G, Hellman E (2003) Pruning severity affects yield, berry weight, and hand harvest efficiency of highbush blueberry. HortScience 38:196-199 https://doi.org/10.21273/HORTSCI.38.2.196
  38. Su X, Zhang J, Wang H, Xu J, He J, Liu L, Zhang T, Chen R, Kang J (2017) Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and miRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules 18:22
  39. Taruscio TG, Barney DL, Exon J (2004) Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J Agric Food Chem 2:3169-3176
  40. Tosun M, Ercisli S, Karlidag H, Sengul M (2009) Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J Food Sci 74:C575-579 https://doi.org/10.1111/j.1750-3841.2009.01297.x
  41. Wang H, Guo X, Hu X, Li T, Fu X, Liu RH (2017) Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem 217:773-781 https://doi.org/10.1016/j.foodchem.2016.09.002
  42. You Q, Wang B, Chen F, Huang Z, Wang X, Luo PG (2011) Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem 125:201-208 https://doi.org/10.1016/j.foodchem.2010.08.063
  43. Yousef GG, Brown AF, Funakoshi Y, Mbeunkui F, Grace MH, Ballington JR, Loraine A, Lila MA (2013) Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.) J Agric Food Chem 61:4806-4815 https://doi.org/10.1021/jf400823s
  44. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675-683 https://doi.org/10.1002/mnfr.200700002
  45. Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200-224 https://doi.org/10.1104/pp.111.180950