DOI QR코드

DOI QR Code

Evaluation of Compression Molding Simulation with Compression Properties of Carbon Fiber Prepreg

탄소 섬유 프리프레그의 압축 물성을 고려한 복합재 고온 압축 성형 해석 평가

  • Bae, Daeryeong (Advanced Materials Engineering, University of Science and Technology (UST)) ;
  • Lee, Jung Wan (Korea Institute of Materials Science (KIMS)) ;
  • Yi, Jin-Woo (Korea Institute of Materials Science (KIMS)) ;
  • Um, Moon-Kwang (Korea Institute of Materials Science (KIMS))
  • Received : 2018.11.12
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

In order to optimize the prepreg compression molding (PCM) process, the forming simulation is required to cope with any problems that may be raised during the process. For the improvement of simulation accuracy, the input data of material property should be measured accurately. However, most studies assume that the compressive properties of the prepreg are identical to the tensile properties without quantifying them separately. Therefore, in this study, the in - plane compressive properties of the prepreg are presented to improve the accuracy of the forming simulation. As a result, the compressive modulus of the fibers was measured to be about $10^{-2}$ times lower than the tensile modulus. Also we designed a square-cup mold with a tilting angle of $110^{\circ}$ to simulate the prepreg formability during the high temperature compression mold process. Shear angles were measured at each corner, which were compared with the simulation results. It was observed that the simulation results using the accurate compressive properties of the prepreg showed a similar trend with the experimental results. It was confirmed that the measured data of the in-plane compression property improved the accuracy of the forming simulation results.

프리프레그 압축 성형(PCM, Prepreg Compression Molding) 공정을 최적화 하기 위해서 성형 해석을 통해 공정 시 나타날 문제를 사전에 예측할 필요가 있다. 해석 정확도를 높이기 위해서는 성형 물성을 구할 때 정확한 물성 측정이 필요하다. 그러나 대부분의 연구는 프리프레그의 압축 물성을 따로 구하지 않고 인장 물성과 동일하다고 가정하여 사용하고 있다. 따라서 본 연구에서는 성형 해석의 정확성을 높이기 위해 섬유의 면내 압축 물성 실험법을 제시했으며 측정 결과, 섬유의 압축 강성은 인장 강성에 비해 약 $10^{-2}$배 낮게 측정되었다. 실제 프리프레그의 성형성을 모사하기 위해 경사면($110^{\circ}$)을 갖는 정사각형 컵 금형을 설계 및 제작하였고 이를 이용한 프리프레그 고온 압축 성형성 평가를 수행하였다. 압축 물성 영향성 확인을 위해 금형 내 취약 지점으로 예상되는 각 코너 부근에서의 전단각을 측정하였으며 동일한 위치에서의 해석 결과와 실험 데이터를 비교하였다. 비교 결과 섬유의 압축 물성이 반영된 해석 결과에서 실험값과 유사한 패턴이 관찰되었으며 면내 압축 물성 반영이 성형 해석결과의 정확도를 향상시키는 것을 확인하였다.

Keywords

BHJRB9_2018_v31n6_421_f0001.png 이미지

Fig. 1. Thickness measurements for (a) UD and (b) PW carbon

BHJRB9_2018_v31n6_421_f0002.png 이미지

Fig. 2. Viscosity for the fast-cure epoxy resin using dynamic scan

BHJRB9_2018_v31n6_421_f0003.png 이미지

Fig. 3. Determination of the shear angle in Zone A from deformed angle (θ) during the tensile (Fi) and shear (Ni) load

BHJRB9_2018_v31n6_421_f0004.png 이미지

Fig. 4. Measurement of bending properties of fabric proposed by ASTM D1388

BHJRB9_2018_v31n6_421_f0005.png 이미지

Fig. 5. Experimental apparatus for coefficient of friction (COF)

BHJRB9_2018_v31n6_421_f0006.png 이미지

Fig. 6. Measurement of in-plane compression properties of prepreg by DMA

BHJRB9_2018_v31n6_421_f0007.png 이미지

Fig. 8. Non-linear stress-strain curves for (a) UD 0°, PW carbon and (b) UD 90° at 100°C

BHJRB9_2018_v31n6_421_f0008.png 이미지

Fig. 9. Shear stress-shear strain curve for (a) PW carbon and (b) UD carbon

BHJRB9_2018_v31n6_421_f0009.png 이미지

Fig. 10. In-plane compression test results for UD and PW carbon

BHJRB9_2018_v31n6_421_f0010.png 이미지

Fig. 13. Magnified image (22.5 x) of deformed angle of the outer layer of prepreg laminate (PW carbon) at 2-d

BHJRB9_2018_v31n6_421_f0011.png 이미지

Fig. 14. Predicted shear angles without compression properties of prepreg using the PAM-FORM simulation (From top view)

BHJRB9_2018_v31n6_421_f0012.png 이미지

Fig. 15. Predicted shear angles with compression properties of prepreg using the PAM-FORM simulation (From top view)

BHJRB9_2018_v31n6_421_f0013.png 이미지

Fig. 16. Comparison of measurement of shear angle at each position near the square-cup corner with simulation results

BHJRB9_2018_v31n6_421_f0014.png 이미지

Fig. 7. (a) Cross-sectional view and (b) top view images of lower mold and (c) open and (d) closed stage of thermoforming experimental apparatus

BHJRB9_2018_v31n6_421_f0015.png 이미지

Fig. 11. (a) Outside and (b) inside images and (c) enlarged corner images at outside of thermoformed product

BHJRB9_2018_v31n6_421_f0016.png 이미지

Fig. 12. (a) Shear-dominated regions of the PW carbon prepreg at four different area in each corner of square-cup; (b) Enlarged images of each position in Area 1

Table 1. Physical properties of the different types of prepreg

BHJRB9_2018_v31n6_421_t0001.png 이미지

Table 2. Calculation of bending stiffness using measured overhang length (O), thickness (t) and areal weight (W) for each prepreg

BHJRB9_2018_v31n6_421_t0002.png 이미지

Table 3. Coefficient of friction (COF) of eight different patterns against our process parameters

BHJRB9_2018_v31n6_421_t0003.png 이미지

Table 4. Comparison of tensile stiffness with compression stiffness of prepreg.

BHJRB9_2018_v31n6_421_t0004.png 이미지

Table 5. Average shear angle at 4 different points of each corner of the square-cup

BHJRB9_2018_v31n6_421_t0005.png 이미지

References

  1. International Council on Clean Transportation. Global Passenger Vehicle Standards. 2014. Available online:http://theicct.org/info-tools/global passenger-vehicle-standards (accessed on 15 December 2016).
  2. Sherwood, J.A., Fetfatsidis, K.A., Gorczyca, J.L., and Berger, L. "Fabric Thermostamping in Polymer Matrix Composite. In Manufacturing Techniques for Polymer Matrix Composites (PMCs)", (Advani, S.G., Hsiao, K.-T., Eds.), Elsevier: New York, NY, USA, 2012, pp. 139-179.
  3. Knibbs, R.H., and Morris, J.B., "The Effects of Fibre Orientation on the Physical Properties of Composites", Composites, Vol. 5, 1974, pp. 209-218. https://doi.org/10.1016/0010-4361(74)90141-4
  4. Roger, W., Jin, X., and Zhu, J., Draping Simulation of Woven Fabrics, Conference: Automotive Composites Conference & Exhibition (ACCE) 2016, 2016.
  5. Data Sheet Provided by Hankuk Carbon Co., Ltd, Miryang, Korea.
  6. Bae, D., Kim, S., Lee, W., Yi, J.W., Um, M.K., and Seong, D.G., "Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry", Materials, Vol. 11, 2018, p. 857. https://doi.org/10.3390/ma11050857
  7. J. Cao et al., "Characterization of Mechanical Behavior of Woven Fabrics: Experimental Methods and Benchmark Results", Composites: Part A, Vol. 39, 2008, pp. 1037-1053. https://doi.org/10.1016/j.compositesa.2008.02.016
  8. ASTM Standard Test Method for Stiffness of Fabrics-ch. D1388-96. American S. for Testing. 2002.
  9. Gorczyca, J., "A Study of the Frictional Behavior of a Plain-Weave Fabric during the Thermostamping Process", Ph.D. Thesis, Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA, USA, January 2004.
  10. Lightfoot, J., Wisnom, M., and Potter, K., "Defects in Woven Preforms: Formation Mechanisms and the Effects of Laminate Design and Layup Protocol", Compos. Part A, Vol. 51, 2013, pp. 99-107. https://doi.org/10.1016/j.compositesa.2013.04.004
  11. Clapp, T.G., and Peng, H., "Buckling of Woven Fabrics Part III: Experimental Validation of Theoretical Models", Textile Research Journal, 1990, p. 641.