DOI QR코드

DOI QR Code

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage

탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구

  • Choi, Eun-Seong (Aircraft Structural Design Lab, Department of Aerospace Engineering, Pusan National University) ;
  • Kim, Wie-Dae (Department of Aerospace Engineering, Pusan National University)
  • Received : 2018.12.10
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.

복합재료는 주어진 경화 사이클(cure cycle)로 오토클레이브 공정이 진행됨에 따라 수지의 화학수축, 열팽창계수 등에 의한 제품 내 잔류응력(residual stress)이 발생한다. 이로 인해 spring-in, warpage와 같은 열 변형이 발생하고 최종 제품의 수치 정확성이 감소한다. 구조물의 정밀한 제작이 요구되는 항공우주분야에서는 열변형으로 인한 문제를 해결하는 것이 중요하다. 따라서 복합재료의 경화과정을 예측하고 이해하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 공정과정에 따른 복합재료의 경화메커니즘을 유한요소해석을 통해 예측하였고, 공정에 의해 발생하는 열변형에 대한 화학수축의 영향을 열팽창계수와 비교하여 분석하였다.

Keywords

BHJRB9_2018_v31n6_404_f0001.png 이미지

Fig. 1. Schematic of (a) spring-in, (b) warpage

BHJRB9_2018_v31n6_404_f0002.png 이미지

Fig. 2. Schematic of cure cycle and degree of cure

BHJRB9_2018_v31n6_404_f0003.png 이미지

Fig. 3. Geometry information of plate model

BHJRB9_2018_v31n6_404_f0004.png 이미지

Fig. 4. Displacement(magnitude) of single lay-up models. Unit:[m]

BHJRB9_2018_v31n6_404_f0005.png 이미지

Fig. 5. Displacement(magnitude) distribution of single lay-up models (a) Line-A (b) Line-B

BHJRB9_2018_v31n6_404_f0006.png 이미지

Fig. 6. Photograph [6] and Y-axis displacement contour of (a) lay-up [45/-45] and (b) [0/45/-45] models

BHJRB9_2018_v31n6_404_f0007.png 이미지

Fig. 7. Y-axis displacement distribution along the Line-1 in Fig. 6

BHJRB9_2018_v31n6_404_f0008.png 이미지

Fig. 8. The stress distribution at point-1 of lay-up [0/45/-45]models

BHJRB9_2018_v31n6_404_f0009.png 이미지

Fig. 9. Schematic of geometry information

BHJRB9_2018_v31n6_404_f0010.png 이미지

Fig. 10. Schematic of (a) degree of cure (b) The CS and CTE of longitudinal direction (c) The CS and CTE of transverse direction. CTE unit:[mm/(mm∙K)]

BHJRB9_2018_v31n6_404_f0011.png 이미지

Fig. 11. Schematic of (a) degree of cure (b) The thermal strain of longitudinal direction (c) The thermal strain of transverse direction. CTE unit:[mm/(mm∙K)]

BHJRB9_2018_v31n6_404_f0012.png 이미지

Fig. 12. The comparison of compro and Ref. [4] for the thermal strain of transverse direction [4]

BHJRB9_2018_v31n6_404_f0013.png 이미지

Fig. 13. The stress distribution at point-1

BHJRB9_2018_v31n6_404_f0014.png 이미지

Fig. 14. (a) spring-in position (b) spring-in along the position (line)

Table 1. Constants of cure kinetics

BHJRB9_2018_v31n6_404_t0001.png 이미지

Table 2. Modulus development constants of the M18 resin

BHJRB9_2018_v31n6_404_t0002.png 이미지

Table 3. Elastic properties of the M55J fiber [11]

BHJRB9_2018_v31n6_404_t0003.png 이미지

Table 4. Constants of thermal expansion coefficient and cure shrinkage

BHJRB9_2018_v31n6_404_t0004.png 이미지

Table 5. Final displacement of Y-axis direction in point-1

BHJRB9_2018_v31n6_404_t0005.png 이미지

Table 6. Final thermal strain

BHJRB9_2018_v31n6_404_t0006.png 이미지

References

  1. (International Journal) Loos, A.C., and Springer, G.S., "Curing of Epoxy Matrix Composite", Journal of Composite Material, Vol. 17, No. 2, 1983, pp. 135-169. https://doi.org/10.1177/002199838301700204
  2. (International Journal) Albert, C., and Fernlund, G., "Spring-in and Warpage of Angled Composite Laminates," Journal of Composites Science and Technology, Vol. 62, 2002, pp. 1895-1912. https://doi.org/10.1016/S0266-3538(02)00105-7
  3. (International Journal) Kim, Y.K., and White, S.R., "Viscoelastic Analysis of Processing-induced Residual Stresses in Thick Composite Laminates," Mechanics of Composite Materials and Structures an International Journal, Vol. 4, No. 4, 1997, pp. 361-387. https://doi.org/10.1080/10759419708945889
  4. (Korean Journal) Oh, J.-M., and Kim, W.-D., "Prediction of Spring-in of Curved Laminated Composite Structure," Journal of the Korean Society for Aeronautical and Space Science, Vol. 43, No. 1, 2015, pp. 1-7. https://doi.org/10.5139/JKSAS.2015.43.1.1
  5. (Korean Journal) Kim, Y.-S., and Kim, W.-D., "Prediction of Spring-in Deformation of Composite Considering Thermal Residual Stress", Journal of Composites Research, Vol. 30, No. 6, 2017, pp. 410-412.
  6. (Korean Journal) Jung, S.-R., and Kim, W.-D., "Analysis of Thermal Deformation of Carbon-fiber Reinforced Polymer Matrix Composite Considering Viscoelasticity", Journal of Composites Research, Vol. 27, No. 4, 2014, pp. 174-181. https://doi.org/10.7234/composres.2014.27.4.174
  7. (Korean Journal) Sung, S.-H., and Kim, W.-D., "Prediction of Deformation of Carbon-fiber Reinforced Polymer Matrix Composite for Tool Materials and Surface Conditions", Journal of Composites Research, Vol. 27, No. 6, 2014, pp. 231-235. https://doi.org/10.7234/composres.2014.27.6.231
  8. (Thesis) Nielsen, M.W., "Prediction of Process Induced Shape Distortions and Residual Stresses in Large Fibre Reinforced Composite Laminates," Ph.D Thesis, Technical University of Denmark, 2013.
  9. (International Journal) Bogetti, T.A., and Gillespie, J.W., "Processinduced Stress and Deformation in Thick-section Thermoset Composite Laminates," Journal of Composite Materials, Vol. 26, No. 5, 1992, pp. 626-660. https://doi.org/10.1177/002199839202600502
  10. (Proceeding) Hubert, P., Johnston, A., Poursartip, A., and Nelson, K., "Cure Kinetics and Viscosity Models for Hexcel 8552 Epoxy Resin," International SAMPE Symposium and Exhibition, SAMPE, 1999, pp. 2341-2354.
  11. (International Journal) Lim, J.H., Kim, H., Kim, S.-W., and Sohn, D., "A Microstructure Modeling Scheme for Unidirectional Composites Using Signed Distance Function Based Boundary Smoothing and Element Trimming," Journal of Advances in Engineering Software, Vol. 109, 2017, pp. 1-14. https://doi.org/10.1016/j.advengsoft.2017.02.014
  12. (Thesis) Johnston, A.A., "An Integrated Model of the Development of Process-induced Deformation in Autoclave Processing of Composite Structures," Ph.D Thesis, University of British Columbia, 1997.
  13. (International Journal) Ersoy, N., and Tugutlu, M., "Cure Kinetics Modeling and Cure Shrinkage Behavior of a Thermosetting Composite", Polymer Engineering & Science, Vol. 50, No. 1, 2010, pp. 84-92. https://doi.org/10.1002/pen.21514