Fig. 1. Molecular structures of stereocomplex and nanocomposites
Fig. 2. Stress-Strain curve of stereocomplex
Fig. 3. Stress-Strain curves of nanocomposite; (a) Longitudinal tension (b) Transverse tension
Fig. 4. Temperature-volume relation graph of stereocomplex before & after hydrolysis
Fig. 5. Temperature-volume relation graph of stereocomplex/CNT before & after hydrolysis
Fig. 6. Comparison of thermal expansion coefficient of nanocomposite determined from molecular dynamics simulation and double inclusion model
Table 1. Comparison of interaction energy between stereocomplex and carbon nanotube before & after hydrolysis
Table 2. Elastic Modulus of nanocomposite before & after hydrolysis
Table 3. Glass transition temperature before & after hydrolysis
Table 4. Thermal expansion coefficient of stereocomplex before & after glass transition
Table 5. Thermal expansion coefficient of nanocomposite before & after glass transition
References
- Raquez, J.-M., Habibi, Y., Murariu, M., and Dubois, P., "Polylactide (PLA)-based Nanocomposites", Progress in Polymer Science, Vol. 38, Issue 10-11, 2013, pp. 1504-1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
- Hong, C.-H., and Han, D.-S., "The Present Situation and Prediction of Next Generation Biomaterial Poly (lactic acid)", Polymer Science and Technology, Vol. 21, No. 1, 2010, pp. 41-44.
- Sutinee Girdthep, Wenuka Sankong, Asamaporn Pongmalee, Tinnakorn Saelee, Winita Punyodom, Puttinan Meepowpan, Patnarin Worajittiphon, "Enhanced Crystallization, Thermal Properties, and Hydrolysis Resistance of Poly(l-lactic acid) and its Stereocomplex by Incorporation of Graphene Nanoplatelets", Polymer Testing, Vol. 61, 2017, pp. 229-239. https://doi.org/10.1016/j.polymertesting.2017.05.009
- Yang, J.-S., Yang, C.-L., Wang, M.-S., Chen, B.-D., and Ma, X.-G., "Crystallization of Alkane Melts Induced by Carbon Nanotubes and Graphene Nanosheets: A Molecular Dynamics Simulation Study", Physical Chemistry Chemical Physics, Issue 34, 2011, pp. 15476-15482.
- Li, L., Li, C.Y., and Ni, C., "Polymer Crystallization-Driven, Periodic Patterning on Carbon Nanotubes", JACS Articles, Vol. 128, No. 5, 2006, pp. 1692-1699. https://doi.org/10.1021/ja056923h
- Yang, S., Yu, S., and Cho, M., "Influence of Thrower-Stone-Wales Defects on the Interfacial Properties of Carbon Nanotube/polypropylene Composites by a Molecular Dynamics Approach", Carbon, Vol. 55, 2013, pp. 113-143.
- Yang, H., Chen, Y., Liu, Y., and Cai, W.S. , "Molecular Dynamics Simulation of Polyethylene on Single Wall Carbon Nanotube", The Journal of Chemical Physics, Vol. 127, Issue 9, 2007.
- Yang, S., Yu, S., and Cho, M., "Multiscale Modeling of Size-dependent Elastic Properties of Carbon Nanotube/polymer Nanocomposites with Interfacial Imperfections", Polymer, Vol. 24, No. 2, 2012, pp. 623-633.
- Yang, S., Yu, S., Ryu, J., Cho, J.-M., Kyoung, W., Han, D.-S., and Cho, M., "Nonlinear Multiscale Modeling Approach to Characterize Elastoplastic Behavior of CNT/polymer Nanocomposites Considering the Interphase and Interfacial Imperfection", International Journal of Plasticity, Vol. 41, 2013, pp. 124-146. https://doi.org/10.1016/j.ijplas.2012.09.010
- Accelrys Inc. San Francisco.
- Sun, H., Mumby, S.J., Maple, J.R., and Hgler, A.T., "An abi initio CFF90 All-atom Force Field for Polycarbonates", Journal of American Chemical Society, Vol. 116, 1994, pp. 2978-2987. https://doi.org/10.1021/ja00086a030
- Plimpton, S., "Fast Parallel Algorithms for Short-range Molecular Dynamics", Journal of Computational Physics, Vol. 117, 1995, pp.1-19. https://doi.org/10.1006/jcph.1995.1039
- Hoover, W.G., "Canonical Dynamics: Equilibrium Phase-space Distributions", Physical Review A, Vol. 31, No 3, 1984, pp. 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
- Hoover, W.G., "Constant-pressure Equations of Motion", Physical Review A, Vol. 34, No. 3, 1986, pp. 2499-2500. https://doi.org/10.1103/PhysRevA.34.2499
- Donald A. McQuarrie, Statistical Mechanics, University of Science Books, 2000.
- Hori, M., and Nemat-Nasser, S., "Double-inclusion Model and Overall Moduli of Multiphase Composites", Mechanics of Materials, Vol. 14, Issue 3, 1993, pp. 189-206. https://doi.org/10.1016/0167-6636(93)90066-Z
- Li, J.Y., "Thermoelastic Behavior of Composites with Functionally Graded Interface: A Multi Inclusion Model", International Journal of Solids Structures, Vol. 37, Issue 39, 2000, pp. 5579-5597. https://doi.org/10.1016/S0020-7683(99)00227-9
- Yang, S., and Cho, M., "A Scale-bridging Method for Nanoparticulate Polymer Nanocomposites and Their Non-dilute Concentration Effect", Applied Physics Letters, Vol. 94, 2009, 223104. https://doi.org/10.1063/1.3143669
- Eshelby, J.D., "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems", Proceedings of the Royal Society of London Series A 1957, Vol. A241, pp. 376-396.
- Tandon, G.P., and Weng, G.J., "Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites", Composites Science and Technology, Vol. 27, 1986, pp. 111-132. https://doi.org/10.1016/0266-3538(86)90067-9
- Jin, J., and Yang, S., "Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites: the Effects of Covalent Grafting", Composites Research, Vol. 30, No. 3, 2017, pp. 193-201. https://doi.org/10.7234/COMPOSRES.2017.30.3.193
- Yang, S., Yu, S., and Cho, M., "Influence of Thrower-Stone-Wales Defects on the Interface Properties of Carbon Nanotube Reinforced Polypropylene Composites by Molecular Dynamics Approach", Carbon, Vol. 55, 2013, pp. 133-143. https://doi.org/10.1016/j.carbon.2012.12.019