DOI QR코드

DOI QR Code

Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding

액상성형공정별 물리적/기계적 특성 비교 평가

  • Received : 2018.10.15
  • Accepted : 2018.12.04
  • Published : 2018.12.31

Abstract

Autoclave process has been remaining as one of the most robust and stable process in fabricating structural composite part of aerospace industry. It has lots of advantages, however exhibits some disadvantages or limitations in capital investment and operation. Recently, there have been various Out-of-Autoclave process being researched and developed to overcome those limitations. In this study, laminate specimens were fabricated using LCM (Liquid Composite Molding) process, regarded as one of potential OoA process. DB (Double bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion), VAP (Vacuum Assisted Process) and Autoclave process were used for laminate specimens. Void content, Thickness, Tg (Glass Transition Temperature), ILSS (Interlaminar Shear Strength) and Flexural strength properties were evaluated for comparison. It is verified that Autoclave based specimen has uniform thickness distribution, the lowest void content and outstanding mechanical properties. And, CAPRI based specimen exhibits relatively good physical and mechanical properties over DB and VAP based specimen and comparable mechanical properties with autoclave based specimen.

오토클레이브 (Autoclave) 성형 공정은 항공산업분야의 복합재 부품 제작에 있어서 매우 안정적이고 중요한 제조방법으로서 자리매김 해왔었지만 오토클레이브가 가진 많은 장점과 함께 단점 또는 제약 사항들을 보여주고 있다. 최근에는 이러한 한계를 극복하기 위하여 다양한 탈 오토클레이브 (OoA, Out-of-Autoclave) 공정들이 연구 개발되고 있는데, 본 연구에서는 탈 오토클레이브 공정 중 하나로서 많은 관심을 받고 있는 액상성형공정 (Liquid Composite Molding)을 사용하여 시편들을 제작하고 이를 오토클레이브 공정으로 제작된 시편과 실험적으로 비교평가하였다. 액상성형공정 중 DB (Double Bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion) 및 VAP (Vacuum Assisted Process) 공정을 사용하여 시편 제작을 수행하고 내부 기공 함유량, 두께, 유리전이온도, 층간전단강도 및 굽힘강도 시험 평가를 통하여 각 제작 공정에 따른 차이를 확인할 수 있었다. 전체적으로 오토클레이브 성형 시편이 우수한 두께 균일도, 낮은 기공 함유량 및 양호한 기계적 강도 특성을 보였으며, 액상성형공정 중에서는 CAPRI 성형 시편이 DB 및 VAP 성형 시편에 비하여 상대적으로 우수한 특성을 가짐을 확인하였다.

Keywords

BHJRB9_2018_v31n6_304_f0001.png 이미지

Fig. 1. A400M Cargo Door Fabrication using VAP Process [8]

BHJRB9_2018_v31n6_304_f0002.png 이미지

Fig. 2. Schematics of (a) Double Bagging, (b) CAPRI [14] and (c) VAP [13]

BHJRB9_2018_v31n6_304_f0003.png 이미지

Fig. 3. Bagging Systems for Specimens (a) #1 Specimen – Double Bagging (b) #3 Specimen - VAP

BHJRB9_2018_v31n6_304_f0004.png 이미지

Fig. 4. Cured Laminate Specimens (#1~#4)

BHJRB9_2018_v31n6_304_f0005.png 이미지

Fig. 5. NDI Result

BHJRB9_2018_v31n6_304_f0006.png 이미지

Fig. 6. Void Content Result

BHJRB9_2018_v31n6_304_f0007.png 이미지

Fig. 7. Average thickness comparison for specimens (#1 DB, #2 CAPRI, #3 VAP & #4 AUTOCLAVE

BHJRB9_2018_v31n6_304_f0008.png 이미지

Fig. 8. Tg Test Result

BHJRB9_2018_v31n6_304_f0009.png 이미지

Fig. 9. ILSS Test Setup

BHJRB9_2018_v31n6_304_f0010.png 이미지

Fig. 10. Mechanical Test results (a) ILSS (b) Flexural Strength

Table 1. Liquid composite molding processes by category

BHJRB9_2018_v31n6_304_t0001.png 이미지

Table 2. Summary of Specimens

BHJRB9_2018_v31n6_304_t0002.png 이미지

Table 3. Summary of specimen thickness

BHJRB9_2018_v31n6_304_t0003.png 이미지

References

  1. Jerome PORA, "Composite Materials in the Airbus A380 - From History to Future -", Proceeding of the 13 International Committee on Composite Materials, Beijing, China, 2001.
  2. Marsh, G., "Airbus Takes on Boeing with Reinforced Plastic A350", Reinforced Plastics, Vol. 51, Issue 11, 2007, pp. 26-29. https://doi.org/10.1016/S0034-3617(07)70383-1
  3. Park, D.C., and Kim, Y.H., "Evaluation of Laminate Property using Caulplate Application", Journal of the Korean Society for Composite Materials, Vol. 29, No. 5, 2016, pp. 231-235.
  4. Koushyar, H., "Effects of Variation in Autoclave Pressure, Cure Temperature, and Vacuum Application Time on the Porosity and Mechanical Properties of a Carbon/epoxy Composite," Master Thesis, Wichita State University, USA, 2011.
  5. Hong, S.H., Song, M.H., Song, K.I., Baik, S.M., and Shin, S.J., "Fabrication and Evaluation of Integrated Composite Part for Aircraft using OoA Prepreg", Journal of the Korean Society for Composite Materials, Vol. 29, No. 5, 2016, pp. 315-320.
  6. Mario Danzi, "Manufacturing of Polymer Composites OOA Prepreg Technology", CMASLab, ETH Zurich, 2017.
  7. Harshe, R., "A Review on Advanced Out-of-Autoclave Composite Processing", Journal of the Indian Institute of Science, Vol. 95, No. 3, 2015.
  8. Gardiner, G., "A400M Cargo Door: Out-of-Autoclave", Retrieved from Composites World website: http://www.compositesworld.com/articles/inside-manufacturing-a400m-cargo-door-out-ofthe-autoclave, 2010.
  9. Phillips, B.J., "Multidisciplinary Optimisation of a CFRP Wing Cover," Doctoral Thesis, Cranfield University, UK, 2009.
  10. Heider, D., Newton, C., and Gillespie, J.W., VARTM Variability and Substantiation, Center for Composite Materials, University of Delaware, 2006.
  11. Kim, S.O., Seong, D.G., Um, M.K., and Choi, J.H., "Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VaRTM", Journal of the Korean Society for Composite Materials, Vol. 28, No. 6, 2015, pp. 340-347.
  12. Campbell, F.C., Manufacturing Processes for Advanced Composites, Elsevier, 2004.
  13. Mitsuhiro Yamashita and Toru Sakagawa, "Development of Advanced Vacuum-assisted Resin Transfer Molding Technology for Use in an MRJ Empennage Box Structure", MHI Technical Review, Vol. 45, No. 4, 2008.
  14. Li, W., Krehl, J., Gillespie, J.W., and Heider, D., "Process and Performance Evaluation of the Vacuum-Assisted Process", Journal of Composite Materials, Vol. 38, Issue. 20, pp. 1803-1814. https://doi.org/10.1177/0021998304044769
  15. US. Patent No. 7,334,782 B2, "Controlled Atmospheric Pressure Resin Infusion Process", 2008.
  16. Vishwanath R. Kedari, Basil I. Farah and Kuang-Ting Hsiao, "Effect of Vacuum Pressure, Inlet Pressure, and Mold Temperature on the Void Content, Volume Fraction of Polyester/e-glass Fiber Composites Manufactured with VARTM Process", Journal of Composite Materials, Vol. 45, No. 26, 2011, pp. 2727-2742. https://doi.org/10.1177/0021998311415442
  17. "Carbon Fiber Laminate - Determination of the Fiber, Resin and Void Content", EN 2564, 1998.
  18. "Carbon Fiber Reinforced Plastics - Determination of the Apparent Interlaminar Shear Strength", EN 2563, 1997.
  19. "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating materials", ASTM D790-03. 2003.