References
- Alfonsi A and Brigo D (2005). New families of copulas based on periodic functions, Journal Communications in Statistics - Theory and Methods, 34, 1437-1447. https://doi.org/10.1081/STA-200063351
- Ara A, Louzada F, and Diniz CAR (2017). Statistical monitoring of a web server for error rates: a bivariate time-series copula-based modeling approach. Journal of Applied Statistics, 44, 2287-2300. https://doi.org/10.1080/02664763.2016.1238041
- Bouzebda S and Cherfi M (2012). Test of symmetry based on copula function. Journal of Statistical Planning and Inference, 142, 1262-1271.
- Busababodhin P and Amphanthong P (2016). Copula modelling for multivariate statistical process control: a review, Communications for Statistical Applications and Methods, 23, 497-515.
- De la Pena VH, Ibragimov R, and Sharakhmetov S (2006). Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series, IMS Lecture Notes-Monograph Series, 2nd Lehmann Symposium-Optimality, 49, 183-209.
- Di Bernardino E and Rulliere D (2015). On an asymmetric extension of multivariate Archimedean copulas. hal-01147778, from: http://hal.archives-ouvertes.fr/hal-01147778
- Durante F (2009). Construction of non-exchangeable bivariate distribution functions, Statist Papers, 50, 383-391. https://doi.org/10.1007/s00362-007-0064-5
- Genest C, Remillard B, and Beaudoin D (2009). Goodness-of-fit tests for copulas: a review and a power study, Insurance: Mathematics and Economics, 44, 199-213. https://doi.org/10.1016/j.insmatheco.2007.10.005
- Genest C, Neslehova J, and Quessy J (2012). Tests of symmetry for bivariate copulas, Annals of the Institute of Statistical Mathematics, 64, 811-834. https://doi.org/10.1007/s10463-011-0337-6
- Ibragimov R (2009). Copula-based characterizations for higher order Markov processes, Economic Theory, 25, 819-846. https://doi.org/10.1017/S0266466609090720
- Jordanger LA and Tjostheim D (2014). Model selection of copulas: AIC versus a cross validation copula information criterion. Statistics & Probability Letters, 92, 249-255.
- Khoudraji A (1995). Constructions a l'etude des couples et a la modelisation de valeurs extremes bivariees (Ph.D. thesis), Universite Laval, Quebec, Canada.
- Kim D and Kim JM (2014). Analysis of directional dependence using asymmetric copula-based regression models. Journal of Statistical Computation and Simulation, 84, 1990-2010. https://doi.org/10.1080/00949655.2013.779696
- Kim JM, Sungur EA, Choi T, and Heo TY (2011). Generalized bivariate copulas and their properties, Model Assisted Statistics and Applications, 6, 127-136.
- Kim WH (2014). Dependence structure of Korean financial markets using copula-GARCH model, Communications for Statistical Applications and Methods, 21, 445-459.
- Kojadinovic I (2013). An Introduction to the Theory and Practice of Copulas, a PowerPoint File Presented at The Summer School on Copulas for Hydrological Application (STAHY Copula 2013), Hannover, Germany.
- Kojadinovic I and Yan J (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software, 34, 1-20.
- Kojadinovic I, Yan J, and Holmes M (2011). Fast large-sample goodness-of-fit tests for copulas, Statistica Sinica, 21, 841-871. https://doi.org/10.5705/ss.2011.037a
- Liebscher E (2008). Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis, 99, 2234-2250. https://doi.org/10.1016/j.jmva.2008.02.025
- Lowin JL (2010). The Fourier copula: theory & applications, SSRN Electronic Journal, from: http://ssrn.com/abstract=1804664
- Louzada F and Ferreira PH (2016). Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model. Journal of Applied Statistics, 43, 2956-2976 https://doi.org/10.1080/02664763.2016.1155204
- Mesiar R and Najjari V (2014). New families of symmetric/asymmetric copulas, Fuzzy Sets and Systems, 252, 99-110. https://doi.org/10.1016/j.fss.2013.12.015
- Mukherjee S, Jafari F, and Kim JM (2015). Optimization of Spearman's Rho, Revista Colombiana De Estadistica, 38, 209-218. https://doi.org/10.15446/rce.v38n1.48811
- Nayland College (2004). American new cars and truck of 2004, NZ, from: http://maths.nayland.school._nz/Year_13_Maths/3.9_Bivariate_data/exemplars/American_New_Cars_and_Trucks_of_2004.csv
- Nelsen RB (2006). An Introduction to Copulas (2nd ed), Springer, New York.
- Nelsen RB (2007). Extremes of nonexchangeability. Statistical Papers, 48, 329-336. https://doi.org/10.1007/s00362-006-0336-5
- Quessy JF and Bahraoui T (2013). Graphical and formal tools for the symmetry of bivariate copulas, Canadian Journal of Statistics, 41, 637-656. https://doi.org/10.1002/cjs.11193
- Quessy JF and Kortbi O (2016). Minimum-distance statistics for the selection of an asymmetric copula in Khoudraji's class of models, Statistica Sinica, 26, 177-204.
- Rodriguez-Lallena JA and U beda-Flores M (2004). A new class of bivariate copulas. Statistics & Probability Letters, 66, 315-325. https://doi.org/10.1016/j.spl.2003.09.010
- Sklar A (1959). Fonctions de repartition a n dimensions et leurs marges, Publications de I'Institut Statistique de I'Universite de Paris, 8, 229-231.
- Schweizer B and Sklar A (1983). Probabilistic Metric Spaces, Elsevier, New York.
- Statistics Korea. Korean Statistical Information Service, from: http://kosis.kr/statHtml/statHtml.do?orgId=376&tblId=DT376100SDMZ021V1&vwcd=MTZTITLE&listid=M2A0001A0001&seqNo=&langmode=ko&language=kor&objvarid=&itmid=&connpath=E1
- Wu S (2014). Construction of asymmetric copulas and its application in two-dimensional reliability modeling, European Journal of Operational Research, 238, 476-485. https://doi.org/10.1016/j.ejor.2014.03.016