겨울철 산란하는 대구, 꼼치, 노래미 전기 자어의 발달 비교

Comparative Early Developments in Winter Spawned Three Pre-larval Fishes(Gadus macrocephalus, Liparis tanakae, Hexagrammos agrammus)

  • 신민규 (경상대학교 해양산업연구소 해양생물교육연구센터) ;
  • 이소광 (경상남도 수산자원연구소) ;
  • 이정태 (경상남도 수산자원연구소) ;
  • 곽우석 (경상대학교 해양산업연구소 해양생물교육연구센터)
  • Shin, Min Gyu (The Marine Bio-Education & Research Center, The Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, So-Gwang (Fisheries Resources and Research Institute) ;
  • Lee, Jeong-Tae (Fisheries Resources and Research Institute) ;
  • Gwak, Woo-Seok (The Marine Bio-Education & Research Center, The Institute of Marine Industry, Gyeongsang National University)
  • 투고 : 2017.12.11
  • 심사 : 2018.03.14
  • 발행 : 2018.03.31

초록

겨울철 환경에 대한 초기 적응을 조사하기 위해 대구(Gadus macrocephalus), 꼼치(Liparis tanakae), 노래미(Hexagrammos agrammus) 자어의 부화 직후와 첫 섭식 시 외부형태, 소화기관, 유영능력의 발달을 확인하였으며, 다른 계절에 부화하는 어종과 비교하였다. 평균 전장(${\pm}SD$)은 대구 $4.35{\pm}0.11mm$, 꼼치 $5.26{\pm}0.08mm$, 노래미 $7.48{\pm}0.35mm$로 부화 시 다른 계절 부화자어에 비하여 컸으며, 세 어종 모두 초기소화기관을 갖춘 후 부화하여 다른 계절 부화자어에 비해 초기소화기관 확립시기가 빨랐다. 대구, 꼼치, 노래미의 첫 섭식 시기가 부화 후 3일, 2일, 0일이었고, 난황을 갖고 있는 기간이 5일 이상으로 다른 계절에 부화하는 자어에 비해 혼합섭이기간이 비교적 길었다. 이 3종 자어의 유영능력은 다른 계절 부화자어에 비해 순항유영속도와 돌진유영속도 모두 부화 직후부터 빨랐다. 이러한 특징들은 자어가 생존하기 어려운 겨울철 환경에 대한 자연선택 및 환경적응의 결과로 생각된다.

This study investigated how the larvae of three winter-spawning fishes are adapted in a cold water environment by examining the morphology, digestive system, and swimming ability of larvae from three winter-spawning species (Gadus macrocephalus, Liparis tanakae, Hexagrammos agrammus). Data were collected at hatching and first feeding. The results were compared with repored data on several non-winter-spawning species. Mean total lengths at hatching (${\pm}SD$) were $4.35{\pm}0.11mm$, $5.26{\pm}0.08mm$, and $7.48{\pm}0.35mm$ for G. macrocephalus, L. tanakae, and H. agrammus, respectively. Three winter-spawning fishes had well-developed digestive tracts after hatching than those of non-winter-spawning fish larvae. Yolks were intact until 5 days post-hatching in all three species, indicating that they had longer mixed-feeding periods compared with fishes spawned during other seasons. G. macrocephalus, L. tanakae, and H. agrammus larvae had superior cruise and burst speeds (measures of swimming ability) than non-winter-spawning larvae. We conclude that the unique characteristics of these three winter-spawning species are naturally selected adaptations under lower water temperature in winter.

키워드

참고문헌

  1. Aoyama, T. 1959. On the egg and larval stages of Liparis tanakae (Gilbert and Burke). Bull. Seikai Reg. Fish. Res. Lab., 18: 69-73.
  2. Blaxter, J.H.S. and K.F. Ehrlich. 1974. Changes in behavior during starvation of herring and place larvae. In: Blaxter, J.H.S. (ed.) The early life history of fish. Springer, Berlin, pp. 575-588.
  3. Blaxter, J.H.S. and G. Hempel. 1963. The influence of egg size on herring larvae (Clupea harengus L.). ICES J. Mar. Sci., 28: 211-240. https://doi.org/10.1093/icesjms/28.2.211
  4. Dou, S.Z., R. Masuda, M. Tanaka and K. Tsukamoto. 2002. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. J. Fish Biol., 60: 1363-1380. https://doi.org/10.1111/j.1095-8649.2002.tb02432.x
  5. Fukuhara, O. 1971. On the egg development and larval stage of Hexagrammos agrammus. Aquacul. Sci., 19: 159-165. (in Japanese)
  6. Gwak, W.S. 2010. Fecundity of Pacific cod Gadus macrocephalus in Jinhae Bay during spawning period. Korean J. Ichthyol., 22: 121-125. (in Korean)
  7. Iwai, T. 1967. The comparative study of the digestive tracts of teleost larvae -I. Fine structure of the gut epithelium in larvae of Ayu. Bull. Jpn. Soc. Sci. Fish., 33: 489-496. https://doi.org/10.2331/suisan.33.489
  8. Iwai, T. 2005. Introduction to ichthyology. Koseisha-koseikaku, Tokyo. (in Japanese)
  9. Kamler, E. 1992. Early life history of fish. Chapman and Hall, London, 267pp.
  10. Kang, Y.S. 2008. Seasonal variation in zooplankton related to North Pacific regime shift in Korea Sea. J. Korean Fish. Soc., 41: 493-504. (in Korean)
  11. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyohak Pub. Co., Ltd., Seoul, 269pp. (in Korean)
  12. Kim, T.J., C.Y. Park, S.G. Lee and W.S. Gwak. 2007. Morphological development of eggs and larvae of the Pacific cod, Gadus macrocephalus. Korean J. Ichthyol., 19: 343-349. (in Korean)
  13. Kim, Y.U., Y.S. Park and J.G. Myoung. 1986. Egg development and larvae of the snailfish, Liparis tanakae (Gilbert et Burke). Bull. Korean Fish. Soc., 19: 380-386. (in Korean)
  14. Kohno, H., Y. Kurita and T. Seikai. 2000. Ontogenetic intervals based on the development of swimming- and feeding-related characters in the hexagrammid, Hexagrammos agrammus, larvae and juveniles. La Mer., 38: 77-86. (in Japanese)
  15. Laurence, G.C. 1974. Growth and survival of haddock (Melanogrammus aeglefinus) larvae in relation to planktonic prey concentration. J. Fish. Res. Bd. Can., 31: 1415-1419. https://doi.org/10.1139/f74-170
  16. Lee, Y.D., S.H. Lee and W.S. Gwak. 2015. SCUBA observations of spawning in Hexagrammos agrammus off the Tongyeong coast, Korea. Fish. Aquat. Sci., 18: 395-399.
  17. Leis, J.M. 2010. Ontogeny of behaviour in larvae of marine demersal fishes. Ichthyol. Res., 57: 325-342. https://doi.org/10.1007/s10228-010-0177-z
  18. Masuda, R. 2009. Behavioural ontogeny of marine pelagic fishes with the implications for the sustainable management of fishery resources. Aqua-BioSci. Monogr., 2: 1-56.
  19. Masuda, R., J. Shoji, M. Aoyama and M. Tanaka. 2002. Chub mackerel larvae fed fish larvae can swim faster than those fed rotifers and Artemia nauplii. Fish. Sci., 68: 320-324.
  20. Murphy, G.I. 1961. Oceanography and variations in the Pacific sardine populations. Cal. Coop. Ocean. Fish., 8: 55-64.
  21. O'Connell, C.P. 1976. Histological criteria for diagnosing the starving condition in early post yolk sac larvae of the northern anchovy, Engraulis mordax Girard. J. Exp. Mar. Biol. Ecol., 25: 285-312.
  22. Ochiai, A. and M. Tanaka. 1986. Ichthyology, vol 2. Koseisha-koseikaku, Tokyo, 1140pp. (in Japanese)
  23. Park, J.Y., N.R. Kim, J.M. Park, J.I. Myeong and J.K. Cho. 2016. The structure of digestive tract and histological features of the larvae in sevenband grouper, Epinephelus septemfasciatus. Korean J. Ichthyol., 28: 9-18. (in Korean)
  24. Park, S.J., S.G. Lee and W.S. Gwak. 2015. Ontogenetic development of the digestive system in chub mackerel Scomber japonicus larvae and juveniles. Fish. Aquat. Sci., 18: 301-309.
  25. Plaza-Pasten, G., S. Katayama, H. Nagashima and M. Omori. 2002. Early life history of larvae of the snailfish Liparis tanakai (Gilbert et Burke) in Sendai Bay, northern Japan. Bull. Jpn. Soc. Fish. Oceanogr., 66: 207-215.
  26. Smith, C.C. and S.D. Fretwell. 1974. The optimal balance between size and number of offspring. Am. Nat., 108: 499-506. https://doi.org/10.1086/282929
  27. Strussmann, C.A. and F. Takashima. 1990. Hepatocyte nuclear size and nutritional condition of starved pejerrey, Odontesthes bonariensis (Cuvier et Valenciennes). J. Fish. Biol., 36: 59-65. https://doi.org/10.1111/j.1095-8649.1990.tb03519.x
  28. Takatsu, T., T. Nakatani, T. Miyamoto, K, Kooka and T. Takahashi. 2002. Spatial distribution and feeding habits of Pacific cod (Gadus macrocephalus) larvae in Mutsu Bay. Japan Fish. Oceanogr. 11: 90-101. https://doi.org/10.1046/j.1365-2419.2002.00193.x
  29. Takatsu, T., T. Nakatani, T. Mutoh and T. Takahashi. 1995. Feeding habits of Pacific cod larvae and juveniles in Mutsu Bay, Japan. Fish. Sci., 61: 415-422. https://doi.org/10.2331/fishsci.61.415
  30. Tanaka, M. 1973. Studies on the structure and function of the digestive system of teleost larvae. PhD. thesis Kyoto Univ., Japan. 136pp.
  31. Tanaka, M. 1975. Digestive systems in fish juveniles. In: Iwai, T. and H. Tsukahara (eds.), Feeding and Development of Fish Juveniles. Kouseisya Kouseikaku, Tokyo, pp. 7-23.
  32. Theilacker, G.H. 1978. Effect of starvation on the histological and morphological characteristics of jack mackerel, Trachurus symmetricus, larvae. Fish. Bull., 76: 403-414.
  33. Thresher, R.E. 1984. Reproduction in reef fishes. T.F.H. Pub., Neptune City, New Jersey, pp. 1-180.
  34. Ware, D.M. 1977. Spawning time and egg size of Atlantic mackerel, Scomber scombrus, in relation to the plankton. J. Fish. Res. Bd. Can., 34: 2308-2315. https://doi.org/10.1139/f77-309
  35. Williams, G.C. 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution, 11: 398-411. https://doi.org/10.1111/j.1558-5646.1957.tb02911.x
  36. Yin, M.C. and J.H.S. Blaxter. 1987a. Escape speeds of marine fish larvae during early development and starvation. Mar. Biol., 96: 459-468. https://doi.org/10.1007/BF00397963
  37. Yin, M.C. and J.H.S. Blaxter. 1987b. Feeding ability and survival during starvation of marine fish larvae reared in the laboratory. J. Exp. Mar. Biol. Ecol., 105: 73-83. https://doi.org/10.1016/S0022-0981(87)80030-8
  38. Yokota, T., T. Nakagawa, N. Murakami, M. Chimura, H. Tanaka, Y. Yamashita and T. Funamoto. 2016. Effects of starvation at the first feeding stage on the survival and growth of walleye pollock Gadus chalcogrammus larvae. Fish. Sci., 82: 73-83. https://doi.org/10.1007/s12562-015-0948-6