염분변화에 따른 넙치(Paralichthys olivaceus)의 스트레스 반응

Stress Responses of Olive Flounder (Paralichthys olivaceus) to Salinity Changes

  • 박형준 (국립수산과학원 양식관리과) ;
  • 민병화 (국립수산과학원 동해수산연구소 양식산업과)
  • Park, Hyung-Jun (Aquaculture Research Division, National Institute of Fisheries Science) ;
  • Min, Byung-Hwa (Aquaculture Industry Research Division, East Sea Fisheries Research Institute)
  • 투고 : 2018.01.17
  • 심사 : 2018.03.13
  • 발행 : 2018.03.31

초록

스트레스를 유발하는 환경적인 요소 중, 염분의 변화는 어류의 성장과 생존에 있어 많은 영향을 미친다. 본 연구에서는 한국의 양식대상 어종인 넙치(P. olivaceus)를 대상으로 넙치양식에 있어 적정 염분범위를 구명하기 위하여 각 염분별(25, 20, 15 psu 및 10 psu) 조건을 통해 24시간 및 48시간 동안 노출시킨 후, 혈액생리학적 분석 및 HSP70 mRNA 발현을 조사하였다. 혈액학적 분석에서 hematocrit (Ht) 및 hemoglobin (Hb), 혈장 코티졸 (cortisol) 및 글루코스 (glucose)의 변화, aspartate aminotransferase (AST) 및 alanine aminotransferase (ALT), $Na^+$, $K^+$, $Cl^-$, $NH_3$, 삼투질농도(osmolality) 및 총 단백질(total protein, TP)는 저염분 조건인 10 psu 및 15 psu에서 다른 염분별 실험구에 비해 대부분의 항목에서 유의적인 차이를 보였다. 혈장 내 SOD (superoxide dismutase) 및 CAT(catalase) 활성에서도 마찬가지로 대조구인 자연해수의 조건보다 저염분(10 psu 및 15 psu)으로 갈수록 증가하는 경향을 보였다. 스트레스성 단백질로 알려진 HSP 70 mRNA 발현에서도 대조구보다 저염분에서 유의적인 차이를 확인하였다. 이러한 결과로, 염분변화에 의한 스트레스가 넙치의 생체방어메커니즘과 항상성 유지를 위한 결과로 혈액학적 반응, 호르몬의 분비 및 단백질 발현의 증가가 나타나는 것으로 여겨지며, 이를 바탕으로 저염분에 대비한 넙치양식에 있어 기초적인 자료로 활용될 것이 기대된다.

We tried to determine the optimum salinity for a cultured of olive flounder (Paralichthys olivaceus) by investigating after exposing the fish at different salinity (10, 15, 20 and 25 psu) for 24 and 48 hours compared with control group (fish before transfer to experimental tank). As a control groups, we compared an analyzed with other experimental groups using olive flounder in natural sea water. Hematological parameters including hematocrit (Ht) and hemoglobin (Hb), cortisol and glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), $NH_3$, osmolality, total protein (TP), $Na^+$, $K^+$ and $Cl^-$ mostly exhibited significant changes at 10 and 15 psu groups compared with control groups for 24 and 48 hours exposed. Plasma SOD (superoxide dismutase) and CAT (catalase) activity also increased with experimental groups (10 and 15 psu) compared to the control groups. The expression of HSP70 mRNA was also higher at low-salinity (10 and 15 psu) than at control group. In particular, after 24 hours exposed, it expression to 15 psu groups showed a significant difference compared to the control group. However, after 48 hours exposed, it expression was higher in the 10 psu groups than the control. It is assumed that the changes in the hematological responses and hormone, homeostasis and metabolism were resulted in to protect fish body from stress. Based on these results, we are expected that it will be used as basic data for the culture of olive flounder prepared for low salinity.

키워드

참고문헌

  1. Ackerman, P.A., R.B. Forsyth, C.F. Mazur and G.K. Iwama. 2000. Stress hormones and the cellular stress response in salmonids. Fish. Physiol. Biochem., 23: 327-336. https://doi.org/10.1023/A:1011107610971
  2. Aksnes, A. and L.R. Njaa. 1981. Catalase, glutathione peroxide andsuperoxide dismutase in different fish species. Comp. BioFig chem. Physiol., 69: 357-358.
  3. Alvarez, R.M.M., M.C. Hidalgo, A. Domezain, A.E. Morales, M.G. Gallego and A. Sanz. 2002. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J. Exp. Biol., 205: 3699-3706.
  4. An, K.W., H.S. Shin, B.H. Min, G.S. Kil and C.Y. Choi. 2010. Physiological changes in response to osmotic and thermal stress conditions in black porgy (Acanthopagrus Schlegeli). Korean J. Icthyol., 22: 17-24. (in Korean)
  5. Barton, B.A., C.B. Schreck and L.A. Sigismondi. 1986. Multiple acute disturbances evoke cumulative physiological stress responses in juvenile Chinook salmon. T. Am. Fish. Soc., 115: 245-251. https://doi.org/10.1577/1548-8659(1986)115<245:MADECP>2.0.CO;2
  6. Barton, B.A. and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish. Dis., 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  7. Basu, A., A.E. Todgham, P.A. Ackerman, M.R. Bibeau, K, Nakano, P.M. Schulte and G.K. Iwama. 2002. Heat shock protein genes and their functional significance in fish. Gene, 295: 173-183. https://doi.org/10.1016/S0378-1119(02)00687-X
  8. Basu, N., C.J. Kennedy and G.K. Iwama. 2003. The effects of stress on the association between hsp70 and the glucocorticoid receptor in rainbow trout. Comp. Biochem. Phys. A, 134: 655-663. https://doi.org/10.1016/S1095-6433(02)00372-0
  9. Becker, J. and E.A. Craig. 1994. Heat-shock proteins as molecular chaperones. Eur. J. Biochem., 219: 11-23. https://doi.org/10.1111/j.1432-1033.1994.tb19910.x
  10. Beckmann, R.P., L.E. Mizzen and W.J. Welch. 1990. Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science, 248: 850-854. https://doi.org/10.1126/science.2188360
  11. Bervoets, L., R. Verheyen and R. Blust. 1996. Uptake of zinc by the midge larvae Chironomus riparius at different salinities: Role of speciation acclimation, and calcium. Envrion. Toxicol. Chem., 15: 1423-1428. https://doi.org/10.1002/etc.5620150823
  12. Boeuf, G. and P. Payan. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. Part C, 130: 411-423.
  13. Byrne, P., D.J. Speare and H.W. Ferguson. 1989. Effects of cationic detergent on the gills and blood chemistry of rainbow trout (Salmo gairdneri). Dis. Aquat. Organ, 6: 195-196.
  14. Chang, Y.J. and J.W. Hur. 1999. Physiological responses of grey mullet (Mugil cepjalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. Korean J. Fish. Soc., 32: 310-316. (in Korean)
  15. Currie, S., C.D. Moyes and B.L. Tufts. 2000. The effects of heat shock and acclimation temperature on Hsp70 and Hsp30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J. Fish. Biol., 56: 398-408. https://doi.org/10.1111/j.1095-8649.2000.tb02114.x
  16. Deinlein, U., A.B. Stephan, T. Horie, W. Luo, G, Xu and J.I. Schroeder. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci., 19: 371-379.
  17. Do, Y.H., B.H. Min, Y.D. Kim and M.S. Park. 2016. Changes on hematological factors and oxygen consumption of Korea rockfish Sebastes schlegeli in high water temperature. J. Kor. Soc. Fish. Mar. Edu., 28: 738-745. (in Korean)
  18. Fei, Y., P. Shiming, S. Peng and S. Zhaohong. 2011. Effects of low salinity on antioxidant enzymes activities in kidney and muscle of juvenile silver pomfret Pampus argenteus. Acta. Ecologica Sinca, 31: 55-60. https://doi.org/10.1016/j.chnaes.2010.11.009
  19. Flos, R., L. Reig, P. Torres and L. Tort. 1988. Primary and secondary stress responses to grading and hauling in rainbow trout, Salmo gairdneri. Aquac., 71: 99-106. https://doi.org/10.1016/0044-8486(88)90277-3
  20. Forman, H.J. and I. Fridovich. 1973. Superoxide dismutase: A comparison of rate constant. Arch. Biochem. Biophys., 158: 369p.
  21. Gabryelak, T., M. Piatkowska, W. Leyko and G. Peres. 1983. Seasonal variation in the activities of peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp. Biochem. Physiol., 75: 383-385.
  22. Goldberg, B. and A. Stern. 1977. The role of the superoxide anion as a toxic species in the erythrocyte. Arch. Biochem. Biophys., 178: 218-225. https://doi.org/10.1016/0003-9861(77)90187-4
  23. Han, H.K., D.Y. Kang, C.Y. Jun and Y.J. Chang. 2003. Effect of salinity change on physiological response and growth of yearling sea bass, Lateolabrax japonicas. Aquaculture, 16: 31-36. (in Korean)
  24. Hosseini, P., H. Vahabzade, M.S. Bourani and R. Kazemi. 2011. The effects of salinity stress on hematocrit and hemoglobin in fingerling rainbow trout (Oncorhynchus mykiss). Int. Con. Med. Biol. Pharma. Sci., (ICMBP '2011).
  25. Houston, A.H. 1997. Review: Are the classical hematological variables acceptable indicators of fish health? T. Am. Fish. Soc., 126: 879-894. https://doi.org/10.1577/1548-8659(1997)126<0879:RATCHV>2.3.CO;2
  26. Houston, A.H. and R. Rupert. 1976. Immediate response of the hemoglobin system of the goldfish, Carassius auratus, to temperature change. Can. J. Zoolog., 54: 1737-1741.
  27. Hur, J.W., J.Y. Lee, Y.H. Kim, I.S. Park and Y.J. Chang. 2006. Effects of salinity on hematological changes and survival of cultured olive flounder, Paralichthys olivaceus. J. Kor. Environ. Biol., 24: 380-386. (in Korean)
  28. Hussain, M., H.W. Park, M. Farooq, K. Jabran and D.J. Lee. 2013. Morphological and physiological basis of salt resistance in different rice genotypes. J. Int. Agri. Biol., 15: 113-118.
  29. Ishioka, H. 1980. Stress reactions in the marine fish, 1: Stress reactions induced by temperature change. B. Jpn. Soc. Sci. Fish., 46: 523-532. https://doi.org/10.2331/suisan.46.523
  30. Iwama, G.K., M.M. Vijayan, R.B. Forsyth and P.A. Ackerman. 1999. Heat shock proteins and physiological stress in fish. Amer. Zool., 39: 901-909. https://doi.org/10.1093/icb/39.6.901
  31. Kang, D.Y., H.W. Kang, G.H. Kim, K.C. Jo and H.C. Kim. 2007. Effect of cold shock on the physiological response of the cultured mullet, Mugil haematocheilus in winter. Korean J. Fish. Soc., 40: 226-233. (in Korean)
  32. Kim, C.W. and H.S. Kang. 2015. The expression of Hsp70 and GST genes in Mytilus coruscus exposed to water temperature and salinity. Korean J. Environ. Biol., 33: 450-458. (in Korean)
  33. Kim, Y.S., Y.H. Do, B.H. Min, H.K. Lim, B.K. Lee and Y.J. Chang. 2009. Physiological responses of starry flounder Platichthys stellatus during freshwater acclimation with different speeds in salinity change. J. of Aquaculture, 22: 28-33. (in Korean)
  34. Lim, S.G., S.B. Han and H.K. Lim. 2016. Effects of salinity on the growth, survival and stress responses of red spotted grouper Epinephelus akaara and hybrid grouper E. akaara female ${\times}$E. lanceolatus male. Korean J. Sci., 49: 612-619 (in Korean).
  35. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C_T}$ metheod. Methods, 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  36. Lukianenko, V. 1984. Hemoglobin polymorphism and monomorphysm in two Acipenseridae populations. Translate by: Younos Adeli. Iran. Fish. Res. Ins., 86p.
  37. Marshall, W.S. 2002. $Na^+$, $Cl^-$, $Ca^{2+}$ and $Zn^{2+}$ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool., 293: 264-283.
  38. McLeay, D.J. and D.J. Brown. 1979. Stress and chronic effects of untreated and treated bleched keaft pulpmill effluent on the biochemistry and stamina of juvenile coho salmon (Oncorhynchus kisutch). J. Fish. Res. Board Can., 36: 1049-1059.
  39. Min, BH., G.A. Noh, M.H. Jeong, D.Y. Kang, C.Y. Choi, I.C. Bang and Y.J. Chang. 2006. Effects of oral administration of thyroid hormone on physiological activity and growth of black porgy reared in fresh water or seawater. J. of Aquaculture, 19: 149-156. (in Korean)
  40. Moody, C.S. and H.M. Hassan. 1982. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA, 79: 2855-2859. https://doi.org/10.1073/pnas.79.9.2855
  41. Morgan, J.D., T. Sakamoto, E.G. Grau and G.K. Iwama. 1997. Physiological and respiratory Responses of the Mozambique tilapia (Orepchromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol., 3: 391-398.
  42. Nakagawa, H., M. Kayama and K. Ikuta. 1977. Electrophoretic evidence of seasonal variation of carp plasma albumin. J. Fac. Fish. Anim. Husb. Hiroshima Univ., 16: 99-106.
  43. Nikapitiya, C., W.S. Kim, K. Park and I.S. Kwak. 2014. Identification of potential markers and sensitive tissues for low or high salinity stress in an intertidal mud crab (Macrophthalmus japonicas). Fish Shellfish Immun., 41: 407-416. https://doi.org/10.1016/j.fsi.2014.09.018
  44. Pan, C.H., Y.H. Chien and B. Hunter. 2003. The resistance to ammonia stress of Penaeus monodon Fabricus juvenile fed diets supplemented with astaxanthin. J. Exp. Mar. Biol. Ecol., 297: 107-118. https://doi.org/10.1016/j.jembe.2003.07.002
  45. Pandey, S., S. Parvez, I. Sayeed, R. Haques, B. Bin-Hafeez and S. Raosuddin. 2003. Biomarkers of oxidative stress: a comparative study of river Yammuna fish Wallagattu (Bi. & Schn.). Sci. Total Environ., 309: 105-115. https://doi.org/10.1016/S0048-9697(03)00006-8
  46. Pang, I.C. and K.H. Hyun. 1998. Seasonal variation of water mass distributions in the Eastern yellow sea and the yellow sea warm current. Korean J. Soc. Oceanogr., 33: 41-52.
  47. Perry, S.F. and S.D. Reid. 1993. ${\beta}$-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish. Physiol. Biochem., 11: 195-203.
  48. Pineda, M.C., X. Turon and S.L. Legentil. 2012. Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on Hsp70 gene expression. Cell Stress Chaperon., 17: 435-444. https://doi.org/10.1007/s12192-012-0321-y
  49. Randall, D.J. 2002. Ammonia toxicity in fish. Mar. Pollut. Bull., 45: 1-12. https://doi.org/10.1016/S0025-326X(02)00182-0
  50. Ryan, C. and M.J. Schlesinger. 1992. Inhibitory effects of HSP70 chaperones on nascent polypeptide. Protein Sci., 1: 980-985. https://doi.org/10.1002/pro.5560010803
  51. Sampaio, L.A. and A. Bianchini. 2002. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J. Exp. Mar. Biol. Ecol., 269: 187-196. https://doi.org/10.1016/S0022-0981(01)00395-1
  52. Siddiqui, N. 1977. Seasonal, size and comparative study of plasma proteins of four air breathing freshwater fishes. P. Indian Acad. Sci. B, 85: 384-390.
  53. Simon, R.H., C.H. Scoggin and D. Patterson. 1981. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem., 256: 7181-7186.
  54. Tsuzuki, M.Y., K. Ogawa, C.A. Strussmann, M. Maita, F. Takashima. 2001. Physiological responses during stress and subsequent recovery at different salinities in adult pejerrey Odontesthes bonariensis. Aquaculture, 200: 349-362. https://doi.org/10.1016/S0044-8486(00)00573-1
  55. Wang, Q.L., S.S. Yu, C.X. Qin, S.L. Dong and Y.W. Dong. 2014. Combined effects of acute thermal and hypo-osmotic stresses on osmolality and hsp70, hsp90 and sod expression in the sea cucumber Apostichopus japonicas Selenka. Aquacult. Int., 22: 1149-1161.
  56. Weirich, C.R. and J.R. Tomasso. 1991. Confinement- and transportinduced stress on red drum juveniles: effect of salinity. Prog. Fish. Cult., 53: 146-149. https://doi.org/10.1577/1548-8640(1991)053<0146:CATISO>2.3.CO;2
  57. Yang, S.J., J.Y. Lee, Y.K. Shin, H.K. Hwang and J.I. Myeong. 2016. Effects temperature and salinity on survival, metabolism and histological change of the rockfish, Sebastes schlegeli. J. Kor. Soc. Fish. Mar. Edu., 28: 1068-1075. (in Korean)
  58. Zhang, J.L. and H. Shi. 2013. Physiological and molecular mechanisms of plant salt tolerance. Photo. Res., 115: 1-22. https://doi.org/10.1007/s11120-013-9813-6